• Anúncio Global
    Respostas
    Exibições
    Última mensagem

P.A Das Abelhas

P.A Das Abelhas

Mensagempor Guedes » Qua Out 13, 2010 13:16

uma colmeia nova tem 8000 abelhas.destas a cada dia que passa morrem 200 do dia 21° em diante nascem diariamente 2000 abelhas que vivem em media 40 dias apos certo tempo o numero dessa colmeia se estabilizara em quantoas abelhas?

sei que a resposta e 80000 por favor me ajudem nao consigo
Guedes
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Out 08, 2010 13:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: fisica
Andamento: cursando

Re: P.A Das Abelhas

Mensagempor Augusto Evaristo » Sex Out 15, 2010 23:39

Olá, caro Guedes e amigos da matemática,

Para podermos responder a sua questão, temos que entender a pergunta: "... o número dessa colmeia se estabilizará em quantas abelhas?". O que se entende: em quanto a população de abelhas não variará? Isso quer dizer, a quantidade em que não haverá aumento ou diminuição no número total de abelhas, o que não quer dizer que não morram ou não nasçam abelhas, mas que a quantidade de nascimentos seja igual a quantidade mortes. Entendido isso, continuemos.

A sua questão, na verdade, envolve duas Progressõess Aritiméticas, e há de se considerar apenas uma no final. Vejamos.

1ª P.A.
A colmeia tem 8000 abelhas, logo {a}_{1}=8000, destas a cada dia que passa morrem 200, logo r = -200.
Montando a equação do termo geral da P.A., temos:

{a}_{n}={a}_{1}+(n-1).r, {a}_{n}=8000+(n-1).(-200), {a}_{n}=8200-200n

Para sabermos o número de dias necessários para a extinção total, ou seja, {a}_{n}=0, dessa população de 8000 abelhas, isolamos o "n" da seguinte forma:

n=\frac{8200-{a}_{n}}{200}, logo, n=\frac{8200-0}{200}, n=41. Isso quer dizer que no 41° dia, essa população chegará a zero.

2ª P.A.
À partir do 21° dia, nascem duas mil abelhas diariamente. Logo {a}_{21}=2000 (utilizamos 21 para facilitar os cálculos e a compreensão, mas não quer dizer que haja os termos de {a}_{1} ao {a}_{20}), e r=2000.

Montando a equação do termo geral da P.A., temos:

{a}_{n}={a}_{k}+(n-k).r, {a}_{n}=2000+(n-21).(2000), {a}_{n}=2000n-40000, para\:n\geq21.

Ora, se quarenta dias depois passam a morrer 2000 abelhas cada dia, do total de abelhas teremos que subtrair 2000 diáriamente. Considerando que isso irá ocorrer a partir do 60° dia (iniciando a contagem com o 21° dia, quarenta dias de vida se concluirá no 60° dia), obteremos uma população constante de abelhas, conforme compreensão apresentada no início, teremos então o seguinte cálculo:

{a}_{60}=2000.(60)-40000, logo:

{a}_{60}=80000

Obs.: Verifique que a establização da população ocorre no 60° dia, ou seja, 19 dias após a extinção das 8000 abelhas iniciais, o que significa que elas não interferem na solução da questão, mas foi desenvolvida a sua P.A. a fim de sabermos o dia certo de sua extinção.

Caso ainda haja alguma dúvida, pode perguntar.
Matemática não é uma arte
É a linguagem universal
Arte é conhece-la!
Avatar do usuário
Augusto Evaristo
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sex Out 15, 2010 18:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Progressões

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59