• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz 3X3

Matriz 3X3

Mensagempor Colton » Seg Out 11, 2010 20:07

+
+

Aqui está um exercício que tem resistido há horas aos meus ataques:

Sem desenvolver, demonstre que o determinante da matriz 3X3

cos 0 - cos a - cos 2a
cos a - cos 2a - cos 3a
cos 2a - cos 3a - cos 4a

é nulo. Está claro que a11 = 1. Mas não consegui cercar o problema com as propriedades dos determinantes. Dando valor, p.ex. a = 30 graus, de fato o determinante é nulo, porém estou perdido que nem cachorro em dia de mudança para resolver isto sem desenvolver...

Tem alguém aí que possa me dar uma orientação?

Colton

+
+

P.S.

Hoje matutando sobre este problema consegui a resolução aplicando o Teorema de Cauchy "A soma dos produtos dos elementos de uma fila qualquer de uma matriz M, ordenadamente, pelos cofatores dos elementos de uma fial paralela, é igual a zero"

Colton

+
+
Colton
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Dom Jul 25, 2010 17:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: formado

Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.