• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Números complexos !

Números complexos !

Mensagempor Loretto » Seg Out 11, 2010 19:07

Os argumentos principais das soluções da equação em z;

iz + 3z* + (z + z*)² - i = 0 , PERTENCE A

A) ] Pi/4 ; 3 Pi / 4 [
B) ] 3 Pi / 4 ; 5 Pi / 4 [
C) ] 5 Pi / 4 ; 3 Pi / 2 [
D) ] Pi/4 ; Pi / 2 [ U ] 3 Pi/2 ; 7 Pi/4 [
E) ] 0 ; Pi/4 [ U ] 7 Pi/4 ; 2 PI [.



OBS : (z* = conjugado de z)
Loretto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Dom Jul 25, 2010 01:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: exatas
Andamento: cursando

Re: Números complexos !

Mensagempor MarceloFantini » Ter Out 19, 2010 18:02

Fazendo z = \cos \theta + i \sin \theta, fica:

iz + 3 \overline {z} + (z+ \overline {z})^2 -i = 0

i \cos \theta - \sin \theta + (3 \cos \theta - i 3 \sin \theta) + (\cos \theta + i \sin \theta + \cos \theta - i \sin \theta)^2 - i = 0

4 \cos^2 \theta + 3 \cos \theta - \sin \theta +i (\cos \theta -3 \sin \theta -1) = 0

Iguale a parte real e a parte imaginária a zero.

4 \cos^2 \theta +3 \cos \theta - \sin \theta = 0

\cos \theta -3 \sin \theta -1 = 0

Resolva, sabendo que 0 \leq \theta < 2 \pi:

Multiplicando a primeira por 3 e subtraindo da segunda:

12 \cos^2 \theta + 9 \cos \theta - 3 \sin \theta  - \cos \theta + 3 \sin \theta +1 =0

12 \cos^2 \theta +8 \cos \theta +1 = 0

\Delta = (8)^2 -4 \cdot 12 \cdot 1 = 64 -48 = 16

\cos \theta = \frac{-8 \pm 4}{24}

\cos \theta = - \frac{1}{2}

\cos \theta = - \frac{1}{6}

Agora é só ver os intervalos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}