• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Logarítmica - Não consigo encontrar a Solução !

Equação Logarítmica - Não consigo encontrar a Solução !

Mensagempor Kirie » Seg Out 04, 2010 22:27

2^x - 4 = log_{2}{(x+4)}
Mesmo após substituiçãode dos termos por ``Y`` não consigo isolar ``X``. Quem puder, agradeço desde já.
Kirie
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Out 04, 2010 22:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheiro
Andamento: formado

Re: Equação Logarítmica - Não consigo encontrar a Solução !

Mensagempor MarceloFantini » Seg Out 04, 2010 23:01

Essa é a equação original? Se possível, por favor poste o enunciado.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Equação Logarítmica - Não consigo encontrar a Solução !

Mensagempor Kirie » Ter Out 05, 2010 23:08

Fantini, essa equação é original, foi retirada do Livro do Cursinho Objetivo,Vestibular MACKENZIE não relacionando o ano, segue o Enunciado:
(MACK) As soluções reais da Equação (............) estão nos intervalos:
a){-4,-3} e {1,2}
b){-3,-2} e {2,3}
c){-4,-3} e {3,4}
d){-4,-3} e {2,3}
e){-2,-1} e {1,2}

Também não encontrei um método para resolução, exceto o gráfico. Se encontrar por favor me avise ! um abraço e agradeço pela atenção !
Kirie
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Out 04, 2010 22:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheiro
Andamento: formado

Re: Equação Logarítmica - Não consigo encontrar a Solução !

Mensagempor MarceloFantini » Ter Out 05, 2010 23:34

É como eu disse no outro post: o método realmente é o gráfico. Veja que ele não pede as raízes exatas, apenas uma idéia de onde elas se encontram.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}