• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistema Linear

Sistema Linear

Mensagempor Samambass » Seg Ago 23, 2010 11:45

Estou com muita dificuldade para discutir o sistema abaixo em função do parâmetro k, ou seja:
Preciso classifica-los, quanto ao número de soluções dizendo se são: Determinado, indeterminado, impossível, etc.

\begin{displaymath}
\mathbf{} 
\left \begin{array}{ccc}
-4x + 3y = 2\\
5x - 4y = 0\\
2x - y = k\\
\end{array}\right
\end{displaymath}


Obs.: Estou tentando pelo método de escalonamento de matriz, isso está correto ou é por outro método? Por favor, poderiam me ajudar?
Samambass
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Ago 23, 2010 11:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado/Engenharia Mecatrônica
Andamento: cursando

Re: Sistema Linear

Mensagempor alexandre32100 » Sex Set 24, 2010 01:39

Nunca gostei muito da resolução de sistemas por matrizes, e também não creio que seja este o caminho.
Primeiramente resolveremos somente as primeiras duas equações do sistema, assim:
\begin{cases}-4x+3y=2\\5x-4y=0\end{cases}
Escolha qual método quer utilizar, mas a resposta é x=-8 e y=-10.
Aplique esta resposta à terceira equação: 2x-y=k.
2\cdot(-8)-(-10)=k\iff k=-6
Aqui pode-se de ver que, se k\not=-6 o sistema é impossível no conjunto \mathbb{R}, para qualquer outro valor, o sistema é definido, admite apenas a solução S=\{-8,-10\}.
alexandre32100
 

Re: Sistema Linear

Mensagempor filipepaixao » Qua Set 29, 2010 10:19

Eu realmente ando a aprender resolver sistemas de equações Lineares (grandes dores de cabeça)
A minha questão seria a seguinte com esse sistema seria possivel começar por usar o Método de Eliminação de Gauss?
ou não é possivel colocar numa matriz visto que não daria uma matriz quadrada?

Ainda estou muito "fresquinho" nesta matéria desculpem a minha "ignorância"...

Obs. Algo que me ajude a perceber essa matéria agradecia.

Abraço
Avatar do usuário
filipepaixao
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Set 29, 2010 09:48
Formação Escolar: ENSINO MÉDIO
Área/Curso: Programação de Sistemas
Andamento: cursando

Re: Sistema Linear

Mensagempor alexandre32100 » Qui Set 30, 2010 13:08

Pois é. Creio que o sistema de eliminação não seja o método mais simples nesta questão.
filipepaixao escreveu:não é possivel colocar numa matriz visto que não daria uma matriz quadrada

Na verdade podemos formar uma matriz quadrada se pensarmos o sistema dessa forma:
\begin{cases}
-4x + 3y + 0k= 2\\ 5x - 4y +0k= 0\\ 2x - y -k= 0
\end{cases}
Por fim, resolve-se o sistema - S=\{x,y,k\}=\{-8,-10,-6\}, e então conclui-se o problema.
alexandre32100
 

Re: Sistema Linear

Mensagempor MarceloFantini » Qui Set 30, 2010 19:32

Só porque não é uma matriz quadrada não quer dizer que não pode ser colocado numa matriz. A questão é que essa matriz apenas não serviria pra muita coisa.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Sistema Linear

Mensagempor filipepaixao » Sáb Out 02, 2010 09:14

Agradecido alexandre32100.

Abraço
Avatar do usuário
filipepaixao
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Set 29, 2010 09:48
Formação Escolar: ENSINO MÉDIO
Área/Curso: Programação de Sistemas
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D