• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda, por favor!

Ajuda, por favor!

Mensagempor Dimas » Sex Set 24, 2010 23:16

Não consigo resolver está questão:
Determine o lado "a" de um triângulo BÂC cujo ângulo é 75°. Lados: a= ?, b=?2, c=?3

PS: O livro do qual estou estudando diz que "a" é igual a (?6+?2)/2, mas não consigo chegar à essa conclusão.
Dimas
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Set 24, 2010 23:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Ajuda, por favor!

Mensagempor DanielFerreira » Ter Set 28, 2010 18:23

Determine o lado "a" de um triângulo BÂC cujo ângulo é 75°. Lados: a= ?, b=?2, c=?3

Lei dos Cossenos
a^2 = b^2 + c^2 - 2 * b * c * cos 75

a^2 = 2 + 3 - 2 * \sqrt{6} * cos (30 + 45)

façamos cos 75° =
cos (30 + 45) =

cos 30 * cos 45 - sen 30 * sen 45 =

\frac{\sqrt{3}}{2} * \frac{\sqrt{2}}{2} - \frac{1}{2} * \frac{\sqrt{2}}{2} =

\frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} =

\frac{\sqrt{6} - \sqrt{2}}{4} =

Então,
a^2 = 5 - 2 * \sqrt{6} * \frac{\sqrt{6} - \sqrt{2}}{4}

a^2 = 5 - \sqrt{6} * \frac{\sqrt{6} - \sqrt{2}}{2}

a^2 = 5 - \frac{\sqrt{36} - \sqrt{12}}{2}

a^2 = 5 - \frac{6 - 2\sqrt{3}}{2}

a^2 = 5 - 3 + \sqrt{3}

a^2 = 2 + \sqrt{3}

minha resp. também não bate, devo ter cometido algum erro. Depois verei com mais calma!
Até logo.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Ajuda, por favor!

Mensagempor Rogerio Murcila » Qua Set 29, 2010 15:51

Apenas para confirmar:

a^2=2+\sqrt[2]{3}

é igual a

a =(\sqrt[]{6}+\sqrt[]{2})/2

Ou seja o calculo do danjr5 está certo.
Rogerio Murcila
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Sex Set 10, 2010 16:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Eletronica / Quimica / Adm
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59