• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como respondo isso?

Como respondo isso?

Mensagempor nayane » Sex Set 10, 2010 11:01

A razão entre a área do quadrado circunscrito e a área do quadrado inscrito no mesmo círculo?
Nayane
Avatar do usuário
nayane
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Sex Set 10, 2010 10:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em ciências biológicas
Andamento: cursando

Re: Como respondo isso?

Mensagempor Douglasm » Sex Set 10, 2010 11:38

Note, através da ilustração abaixo, que o diâmetro da circunferência é igual a diagonal do quadrado inscrito e igual ao lado do quadrado circunscrito a ela. Chamando de "D" o diâmetro da circunferência, temos:

\mbox{Area (inscrito)} = \left(\frac{D}{\sqrt{2}}\right)^2 = \frac{D^2}{2}\;\mbox{u.a.}

\mbox{Area (circunscrito)} = D^2\;\mbox{u.a.}

A razão entre as áreas é, portanto:

\frac{\mbox{Area (circunscrito)}}{\mbox{Area (inscrito)}} = {D^2}.\frac{2}{D^2} = 2

quadcirinsc.JPG
quadcirinsc.JPG (8.53 KiB) Exibido 2078 vezes
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Como respondo isso?

Mensagempor nayane » Sáb Set 11, 2010 20:12

Muito obrigada, sua ajuda foi muito importante. :)
Nayane
Avatar do usuário
nayane
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Sex Set 10, 2010 10:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em ciências biológicas
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.