• Anúncio Global
    Respostas
    Exibições
    Última mensagem

GEOMETRIA

GEOMETRIA

Mensagempor JOHNY » Qui Set 02, 2010 18:23

CONSIDERE UM QUADRADO ABCD E DOIS TRIANGULOS EQUILATEROS ABP e BCQ, RESPECTIVAMENTE, INTERNO E EXTERNO AO QUADRADO. A SOMA DAS MEDIDAS DOS ANGULOS ADP, BQP E DPQ É???
JOHNY
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Set 02, 2010 18:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: GEOMETRIA

Mensagempor alexandre32100 » Sex Set 03, 2010 16:01

A ilustração do enunciado:

geometria.png
(clica pra ampliar)

\alpha = \angle ADP, \beta = \angle BQP e \gamma = \angle DPQ.

Na figura, é fácil perceber que o ponto P pertence à reta \overline{DQ}, ou seja \gamma=180^{\circ}, e daí fica fácil definir o valor de \alpha + \beta usando a soma dos ângulos internos do quadrilátero ABQD (que é 360^{\circ}) , uma vez que o ângulo \hat{DAB}=90^{\circ} \hat{ABQ}=90^{\circ}+60^{\circ} (afinal, ele é resultante da soma de um vértice do quadrado e do triângulo equilátero).
Mas e se são tivessemos a certeza de que P está sobre \overline{DQ}? Bastaria apenas usar a soma dos ângulos internos do pentágono ABQPD e deixar \alpha, \beta e \gamma como incógnitas, afim de achar a soma dos três ângulos.
alexandre32100
 


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.