• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Analise combinatoria

Analise combinatoria

Mensagempor cristina » Qui Ago 26, 2010 14:13

Olá estou com duvida neste exercicio.

{A}_{n,3} - {C}_{n,3} = 25  {C}_{n,n-1}

\frac{{C}_{8,n+2}}{{C}_{8,n+1}} = 12

Se alguem puder me ajudar agradeço
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: Analise combinatoria

Mensagempor DanielRJ » Qui Ago 26, 2010 15:49

cristina escreveu:Olá estou com duvida neste exercicio.

{A}_{n,3} - {C}_{n,3} = 25  {C}_{n,n-1}

\frac{{C}_{8,n+2}}{{C}_{8,n+1}} = 12

Se alguem puder me ajudar agradeço


Olá amiga a segunda eu consegui fazer vo demonstrar para voce:

\frac{{C}_{8,n+2}}{{C}_{8,n+1}} = 12


\displaystyle { \frac{ \frac {8!}{(n+2)!(n+2-8)!}}{\frac {8!}{(n+1)!(n+1-8)!} }}=12 corta 8! de cima com o debaixo fica assim.



\frac {(n+2)!(n-6)!} {(n+1)!(n-7)!}=12 desenvolve (n+2) e (n-6) para poder cortar em baixo.


\frac {(n+2)(n+1)!(n-6)(n-7)!} {(n+1)!(n-7)!}=12 corta (n+1) e (n-7)!

{(n+2)(n-6)=12 faz a distributiva!

n^2-6n+2n-12=12

n^2-4n-24=0 faz baskara e acha o N!! valeu depois eu resolvo a outra.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Analise combinatoria

Mensagempor cristina » Qui Ago 26, 2010 16:50

Obrigada pela dica, onde é 12 coloquei errado é 2, porém nao consigo achar a raiz quadrada, não dá certo.
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: Analise combinatoria

Mensagempor DanielRJ » Qui Ago 26, 2010 19:34

cristina escreveu:Obrigada pela dica, onde é 12 coloquei errado é 2, porém nao consigo achar a raiz quadrada, não dá certo.


Oi amiga essa questão é de concurso? tem resposta?
porque eu tambem não consegui achar o valor de n não. vamos esperar uma almar boa ajudar agente.. mas as conta em cima estão tudo certinho ok?
sobre a primera questão que voce postou ela é um pouco trabalhosa consegui fazer mas vai demorar pra min fazer um latex dela então aguarda ai vlw . :y:
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Analise combinatoria

Mensagempor cristina » Qui Ago 26, 2010 19:43

Oi amigo, já tentei de tudo tbem e não consegui, as alternativas que tenho são:
a) 5
b) 6
c) 1
d) 7
e) 9
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: Analise combinatoria

Mensagempor DanielRJ » Qui Ago 26, 2010 20:21

cristina escreveu:Oi amigo, já tentei de tudo tbem e não consegui, as alternativas que tenho são:
a) 5
b) 6
c) 1
d) 7
e) 9


vo levar ela para um professor tentei substituir umas das opçoes no lugar de N para ver se zera a equação mas não deu.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Analise combinatoria

Mensagempor Douglasm » Qui Ago 26, 2010 21:30

Bom, vamos ao primeiro:

A_{n,3} - C_{n,3} = 25C_{n,n-1} \;\therefore

\frac{n!}{(n-3)!} - \frac{n!}{3!.(n-3)!} = 25n \;\therefore

(3!-1).\frac{n!}{3!.(n-3)!} = 25n \;\therefore

5.\frac{n.(n-1).(n-2)}{6} = 25n \;\therefore

n^3 - 3n^2 + 2n = 30n \;\therefore

n^2 - 3n - 28 = 0 \;\therefore

n = 7 \;\mbox{(note que a raiz negativa nao nos interessa)}

Agora para o segundo problema:

\frac{C_{8,n+2}}{C_{8,n+1}} = 2

\frac{8!}{(n+2)!.(8-n-2)!} . \frac{(n+1)!.(8 - n - 1)!}{8!} = 2 \;\therefore

\frac{8!}{(n+2)!.(6-n)!} . \frac{(n+1)!.(7- n)!}{8!} = 2 \;\therefore

\frac{(7-n)}{(n+2)} = 2 \;\therefore

7-n = 2n + 4 \;\therefore

n = 1

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Analise combinatoria

Mensagempor DanielRJ » Qui Ago 26, 2010 22:10

Douglasm escreveu:Bom, vamos ao primeiro:

A_{n,3} - C_{n,3} = 25C_{n,n-1} \;\therefore

\frac{n!}{(n-3)!} - \frac{n!}{3!.(n-3)!} = 25n \;\therefore

(3!-1).\frac{n!}{3!.(n-3)!} = 25n \;\therefore

5.\frac{n.(n-1).(n-2)}{6} = 25n \;\therefore

n^3 - 3n^2 + 2n = 30n \;\therefore

n^2 - 3n - 28 = 0 \;\therefore

n = 7 \;\mbox{(note que a raiz negativa nao nos interessa)}

Agora para o segundo problema:

\frac{C_{8,n+2}}{C_{8,n+1}} = 2

\frac{8!}{(n+2)!.(8-n-2)!} . \frac{(n+1)!.(8 - n - 1)!}{8!} = 2 \;\therefore

\frac{8!}{(n+2)!.(6-n)!} . \frac{(n+1)!.(7- n)!}{8!} = 2 \;\therefore

\frac{(7-n)}{(n+2)} = 2 \;\therefore

7-n = 2n + 4 \;\therefore

n = 1

Até a próxima.


Douglas é igual a 12 graças a você percebi que botei a formula na ordem errada! vo postar a resolução:
Editado pela última vez por DanielRJ em Qui Ago 26, 2010 22:36, em um total de 1 vez.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Analise combinatoria

Mensagempor Douglasm » Qui Ago 26, 2010 22:32

Em seu segundo post, Cristina afirmou ter errado, que na verdade a segunda expressão é igual a 2. Veja só:

cristina escreveu:Obrigada pela dica, onde é 12 coloquei errado é 2, porém nao consigo achar a raiz quadrada, não dá certo.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Analise combinatoria

Mensagempor DanielRJ » Qui Ago 26, 2010 22:39

aff. to aqui igual um troxa fazendo erradoe entao
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Analise combinatoria

Mensagempor cristina » Sex Ago 27, 2010 00:48

Amigo, desulpe te incomodar mais uma vez,
não entendi em relação ao primeiro problema, da onde surgiu o 3 fatorial - 1 e de subtração pasou para multiplicação
não compreendi o seu raciocinio.
abs
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: Analise combinatoria

Mensagempor Douglasm » Sex Ago 27, 2010 09:46

Vou detalhar um pouco mais só essa parte, veja se compreende:

\frac{n!}{(n-3)!} - \frac{n!}{3!.(n-3)!} = 25n\;\therefore

\frac{3!}{3!}.\frac{n!}{(n-3)!} - \frac{n!}{3!.(n-3)!} = 25n

Agora, colocando o n!/3!.(n-3)! em evidência temos:

(3!-1).\frac{n!}{3!.(n-3)!} = 25n \;\therefore

(6-1).\frac{n.(n-1).(n-2).(n-3)!}{6.(n-3)!} = 25n \;\therefore

5.\frac{n.(n-1).(n-2)}{6} = 25n \;(...)

Ai é só continuar como já fiz anteriormente.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Analise combinatoria

Mensagempor cristina » Sex Ago 27, 2010 11:37

Obrigada
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D