• Anúncio Global
    Respostas
    Exibições
    Última mensagem

64=65?

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

64=65?

Mensagempor alexandre32100 » Qui Ago 19, 2010 14:43

Eu estava mexendo em minhas coisas quando vi uma imagem, similar a abaixo, onde consta a prova de que 64=65.
64=65.jpg
não há erro, as peças são idênticas nas duas figuras

Entretanto todos nós sabemos que isto está longe de ser verdade, além disso posso afirmar: há uma "trapaça" nesta prova.
Mas onde, qual é a "trapaça"?
alexandre32100
 

Re: 64=65?

Mensagempor Elcioschin » Qui Ago 19, 2010 17:47

A 1ª figura é perfeita. A segunda não!

Faça o seguinte:

Desenhe a 1ª figura (um quadrado de 8 cm de lado) e recorte conforme indicado.
Você terá obtido dois triângulos retângulos iguais e dois trapézios retângulos iguais.

O ângulo menor  do triângulo tem inclinação tg = 3/8 ----> tg = 0,375

Pelo vértice obtuso O do trapézio trace uma linha paralela à altura do trapézio. Você terá dividido o trapézio em um retângulo e um triângulo. O ângulo menor Ô deste triângulo tem inclinação tgÔ = 2/5 ----> tgÔ = 0,400

Assim, as duas inclinações são DIFERENTES, embora próximas. Se você juntar as hipotenusas dos dois triângulos, NUNCA obterá uma reta

Tente agora juntar as 4 partes como mostrado na figura 2. Você verá que é impossível.

Para se obter um retângulo conforme a 2ª figura, ficará no meio, na junção entre as hipotenusas dos triângulos, um espaço vazio. A área deste espaço vazio é igual a 1 cm².

Assim, a área DE PAPEL, na 2ª figura vale 5*13 - 1 = 65 - 1 = 64 ----> Exatamente a área da 1ª figura.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: 64=65?

Mensagempor alexandre32100 » Qui Ago 19, 2010 18:04

Ah é. :-P
Na segunda figura, a diagonal é um "espaço vazio", mais precisamente um paralelogramo de área 1cm².
alexandre32100
 


Voltar para Desafios Difíceis

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}