Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por alexandre32100 » Qui Ago 19, 2010 14:43
Eu estava mexendo em minhas coisas quando vi uma imagem, similar a abaixo, onde consta a prova de que

.

- não há erro, as peças são idênticas nas duas figuras
Entretanto todos nós sabemos que isto está longe de ser verdade, além disso posso afirmar: há uma "trapaça" nesta prova.
Mas onde, qual é a "trapaça"?
-
alexandre32100
-
por Elcioschin » Qui Ago 19, 2010 17:47
A 1ª figura é perfeita. A segunda não!
Faça o seguinte:
Desenhe a 1ª figura (um quadrado de 8 cm de lado) e recorte conforme indicado.
Você terá obtido dois triângulos retângulos iguais e dois trapézios retângulos iguais.
O ângulo menor  do triângulo tem inclinação tg = 3/8 ----> tg = 0,375
Pelo vértice obtuso O do trapézio trace uma linha paralela à altura do trapézio. Você terá dividido o trapézio em um retângulo e um triângulo. O ângulo menor Ô deste triângulo tem inclinação tgÔ = 2/5 ----> tgÔ = 0,400
Assim, as duas inclinações são DIFERENTES, embora próximas. Se você juntar as hipotenusas dos dois triângulos, NUNCA obterá uma reta
Tente agora juntar as 4 partes como mostrado na figura 2. Você verá que é impossível.
Para se obter um retângulo conforme a 2ª figura, ficará no meio, na junção entre as hipotenusas dos triângulos, um espaço vazio. A área deste espaço vazio é igual a 1 cm².
Assim, a área DE PAPEL, na 2ª figura vale 5*13 - 1 = 65 - 1 = 64 ----> Exatamente a área da 1ª figura.
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por alexandre32100 » Qui Ago 19, 2010 18:04
Ah é.
Na segunda figura, a diagonal é um "espaço vazio", mais precisamente um paralelogramo de área 1cm².
-
alexandre32100
-
Voltar para Desafios Difíceis
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.