• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Valor de (p + q)

Valor de (p + q)

Mensagempor Carolziiinhaaah » Qua Ago 18, 2010 15:05

A reta definida por x = k, com k real, intersecta os gráficos de y = log_5 x e y = log_5 (x + 4) em pontos de distância 1/2 um do outro. Sendo k = p + \sqrt[]{q}, com p e q inteiros, então p + q é igual a:

a) 4
b) 5
c) 6
d) 8
e) 10
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Valor de (p + q)

Mensagempor Douglasm » Qua Ago 18, 2010 16:02

Olá Carol. Temos que notar duas coisas:

- Se as funções interceptam a reta x = k, isso indica que x = k nos pontos que procuramos (obviamente =P).
- A distância entre esses pontos (1/2) é a diferença entre os valores de y_1 e y_2 (chamarei assim para diferenciar) para x = k.

y_1 = \log_5 (k+4)

y_2 = \log_5 (k)

Logo:

y_1 - y_2 = \log_5 (k+4) - \log_5 (k) = \frac{1}{2} \;\therefore

\log_5 \left(\frac{k+4}{k}\right) = \frac{1}{2} \;\therefore

\frac{k+4}{k} = \sqrt{5} \;\therefore

k = 1 + \sqrt{5}

Notamos que p = 1 e q = 5. Finalmente: p + q = 6, alternativa c. Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.