Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por alexandre32100 » Ter Ago 17, 2010 01:11
Prove que

usando indução sobre

.
-
alexandre32100
-
por Douglasm » Ter Ago 17, 2010 10:13
Olá Alexandre. Não me vem a mente no momento um jeito de provar isso por indução, mas um jeito muito mais simples e objetivo seria comparar essa soma com o desenvolvimento de um binômio. Note que:

A soma que você tem é:

Consequentemente, essa soma corresponde ao binômio:

Mas fica em aberto para alguém demonstrar isso usando o método de indução, que é o que pede o problema. Até a próxima.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Desafios Difíceis
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Prova por Indução
por Wania123 » Seg Jan 18, 2016 10:15
- 1 Respostas
- 4123 Exibições
- Última mensagem por adauto martins

Dom Jan 24, 2016 13:41
Cálculo: Limites, Derivadas e Integrais
-
- Prova por Indução (Soma de Progressão)
por RicardoSouza » Sex Fev 17, 2012 20:30
- 4 Respostas
- 4401 Exibições
- Última mensagem por nietzsche

Sex Mar 02, 2012 03:11
Progressões
-
- [Prova por Indução] Progressão Aritmético-Geométrica
por MateusDantas1 » Qui Fev 16, 2012 15:07
- 10 Respostas
- 7468 Exibições
- Última mensagem por Victor Neumann

Qui Fev 23, 2012 21:57
Progressões
-
- [hipótese da indução] Indução matemática
por leonardoandra » Sáb Out 12, 2013 22:58
- 1 Respostas
- 2680 Exibições
- Última mensagem por leonardoandra

Seg Out 14, 2013 20:10
Equações
-
- indução
por gramata » Qua Set 02, 2009 16:55
- 0 Respostas
- 1233 Exibições
- Última mensagem por gramata

Qua Set 02, 2009 16:55
Seminário de Resolução de Problemas
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.