Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por alexandre32100 » Ter Ago 17, 2010 01:11
Prove que

usando indução sobre

.
-
alexandre32100
-
por Douglasm » Ter Ago 17, 2010 10:13
Olá Alexandre. Não me vem a mente no momento um jeito de provar isso por indução, mas um jeito muito mais simples e objetivo seria comparar essa soma com o desenvolvimento de um binômio. Note que:

A soma que você tem é:

Consequentemente, essa soma corresponde ao binômio:

Mas fica em aberto para alguém demonstrar isso usando o método de indução, que é o que pede o problema. Até a próxima.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Desafios Difíceis
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Prova por Indução
por Wania123 » Seg Jan 18, 2016 10:15
- 1 Respostas
- 4024 Exibições
- Última mensagem por adauto martins

Dom Jan 24, 2016 13:41
Cálculo: Limites, Derivadas e Integrais
-
- Prova por Indução (Soma de Progressão)
por RicardoSouza » Sex Fev 17, 2012 20:30
- 4 Respostas
- 4244 Exibições
- Última mensagem por nietzsche

Sex Mar 02, 2012 03:11
Progressões
-
- [Prova por Indução] Progressão Aritmético-Geométrica
por MateusDantas1 » Qui Fev 16, 2012 15:07
- 10 Respostas
- 7140 Exibições
- Última mensagem por Victor Neumann

Qui Fev 23, 2012 21:57
Progressões
-
- [hipótese da indução] Indução matemática
por leonardoandra » Sáb Out 12, 2013 22:58
- 1 Respostas
- 2498 Exibições
- Última mensagem por leonardoandra

Seg Out 14, 2013 20:10
Equações
-
- indução
por gramata » Qua Set 02, 2009 16:55
- 0 Respostas
- 1176 Exibições
- Última mensagem por gramata

Qua Set 02, 2009 16:55
Seminário de Resolução de Problemas
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.