por Luiza » Ter Ago 10, 2010 19:52
Olá , preciso de uma ajuda nesses dois exercicios !
Obrigada .
1 ) Determine o valor positivo de m para que a equação mx² - ( m+1) x + 1 = 0 tenha uma raíz igual a quarta parte da outra.
2 ) Determine o valor de k para que a equação x² - ( k+1) x+1=0 tenha uma raíz igual ao dobro da outra .
-
Luiza
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Ter Nov 10, 2009 12:28
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Molina » Qua Ago 18, 2010 14:24
Boa tarde, Luiza.
Luiza escreveu:1 ) Determine o valor positivo de m para que a equação mx² - ( m+1) x + 1 = 0 tenha uma raíz igual a quarta parte da outra.
Vamos lá.
Considerando que

e

são soluções da equação do 2º grau, pelo enunciado, temos que

, pois é a
quarta parte da outra.
Usando a propriedade conhecida como "Soma e Produto", implica que:


Mas,


Substituindo a segunda equação na primeira:








Resolvendo essa equação, a raiz positiva é

Substituindo esse valor de m na equação original você verá que as raízes satisfazem a condição dada.
Achei esse procedimento longo demais, pode haver formas mais reduzidas de se fazer.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Ângulo de um vértice
por Balanar » Qui Set 16, 2010 22:24
- 2 Respostas
- 1222 Exibições
- Última mensagem por Balanar

Sex Set 17, 2010 00:46
Geometria Plana
-
- vertice da parabola
por PHANIE » Ter Abr 05, 2011 15:54
- 1 Respostas
- 2090 Exibições
- Última mensagem por Elcioschin

Ter Abr 05, 2011 19:56
Funções
-
- [Vértice de uma Parábola]
por gustavowelp » Qui Ago 16, 2012 00:28
- 3 Respostas
- 2436 Exibições
- Última mensagem por gustavowelp

Sex Ago 17, 2012 10:26
Funções
-
- (UFPA) Vértice da Parábola
por Abelardo » Seg Jun 06, 2011 19:25
- 1 Respostas
- 3195 Exibições
- Última mensagem por Rodrigo Costa

Qua Set 05, 2012 18:49
Funções
-
- Encontrar vértice do trapézio
por -civil- » Ter Jul 12, 2011 14:41
- 1 Respostas
- 2004 Exibições
- Última mensagem por LuizAquino

Ter Jul 12, 2011 18:31
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.