por Joana Gabriela » Qui Ago 05, 2010 11:47
Questão 18:
Uma pesquisa de opinião, realizada num bairro de Natal, apresentou o resultado seguinte: 65% dos
entrevistados freqüentavam a praia de Ponta Negra, 55% freqüentavam a praia do Meio e 15% não iam à
praia.
De acordo com essa pesquisa, o percentual dos entrevistados que freqüentavam ambas as praias
era de:
A) 20% C) 40%
B) 35% D) 25%
-
Joana Gabriela
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Qua Jul 28, 2010 10:13
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Agroecologia
- Andamento: cursando
por MarceloFantini » Qui Ago 05, 2010 16:39
Se você fizer um diagrama de Venn ficará mais fácil de visualizar. Aqui vai a resolução:
A quantidade de pessoas que visitam SOMENTE a praia de Ponte Negra é

, a quantidade de pessoas que visitam SOMENTE a praia do Meio é

e a quantidade de pessoas que visitam AMBAS é

. Supondo 100 pessoas, temos que

. Mas também sabemos que

e que

. Somando, temos:

. Subtraindo essa da anterior:

. Ou seja, 35% das pessoas visitam ambas.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Matemática Financeira
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- UFRN 2001
por Joana Gabriela » Seg Ago 09, 2010 11:00
- 6 Respostas
- 5839 Exibições
- Última mensagem por Joana Gabriela

Sex Ago 13, 2010 10:38
Conversão de Unidades
-
- LOGARITMO - Questão 40 - Vestibular 2012 UFRN
por Anastacia Vaz » Dom Abr 07, 2013 12:03
- 2 Respostas
- 7089 Exibições
- Última mensagem por nakagumahissao

Dom Abr 14, 2013 14:34
Logaritmos
-
- Matrizes B^2001
por Vagner Almeida » Ter Fev 24, 2009 20:36
- 4 Respostas
- 2973 Exibições
- Última mensagem por Vagner Almeida

Dom Mar 01, 2009 15:59
Matrizes e Determinantes
-
- Uerj 2001 - questão sobre conjuntos
por sspmat61 » Qui Mar 10, 2011 15:16
- 4 Respostas
- 14659 Exibições
- Última mensagem por Abelardo

Sex Mar 11, 2011 22:43
Álgebra Elementar
-
- Geometria Espacial - Cones - UFMG 2001
por felip3mg » Ter Dez 06, 2011 12:16
- 1 Respostas
- 2357 Exibições
- Última mensagem por joao_pimentel

Qua Dez 14, 2011 21:06
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.