por Loretto » Qui Jul 29, 2010 17:15
1)Determine uma função y = f(x) que seja dada implicitamente pela equação xy² + y + x = 1
*Como eu faço para achar essa função ?
Expresse dy/dx em termos de x e de y, onde y = f(x) é uma função diferenciável dada implicitamente pela equação :
c) xy² + 2y = 4
Tentativa de resposta :
[ xy² ]' + [ 2y ]' = [ 4 ]'
[ 2y + y² ] + 2 = 0
2y. [dy/dx] + y² [dy/dx] = -2
[ dy/dx ]. (2y + y²) = -2
[ dy/dx ] = -2 / ( 2y + y² )
Como eu deveria proceder nessas questões de função dada implicitamente, alguém pode me explicar um pouco detalhado, pois estou sentido bastante dificuldade. Obrigado a todos que me ajudarem !!
OBS : derivada de xy² usei a regra do produto = [x] ' . y² + x. [y²]' = 1.2y + y²
-
Loretto
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Dom Jul 25, 2010 01:35
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: exatas
- Andamento: cursando
por Tom » Sex Jul 30, 2010 01:28
Ficou um pouco em aberto a pergunta, entao vou responder conforme entendi.
Na primeira, eu penso que basta isolar y e escreve-lo em funcao de x. Pra isso basta resolver a equacao como uma equacao do segundo grau em y... bem simples.
Ja segunda funcao, eu penso que inicialmente voce deve isolar y em funcao de x. Pra isso basta proceder analogamente ao item anterior resolvendo a equacao como uma equacao do segundo grau em y. Fazendo isso voce expressará y em funcao de x. Em seguida basta derivar parcialmente y(x) em funcao de x.
Tom
-
Tom
- Usuário Parceiro

-
- Mensagens: 75
- Registrado em: Sex Jul 02, 2010 00:42
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Automação e Controle Industrial
- Andamento: formado
por Loretto » Sex Jul 30, 2010 15:00
Não entendi o que você tentou me explicar, se for possível eu preciso ver os cálculos para entender. Ainda estou aprendendo essas funções dadas implicitamente.
Como eu vou fazer essa função virar uma simples equação de 2º grau no primeiro exercício, se eu tenho x e y ????? Apenas isolando x não resolve, meu delta dá negativo. E o segundo exercício também não entendi.
Obrigado a todos que propuserem ajuda !
-
Loretto
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Dom Jul 25, 2010 01:35
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: exatas
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- DADA A FUNÇÃO
por SILMARAKNETSCH » Sex Nov 09, 2012 15:29
- 5 Respostas
- 2642 Exibições
- Última mensagem por SILMARAKNETSCH

Sex Nov 09, 2012 16:50
Funções
-
- Dada a matriz seu determinante é:
por oescolhido » Qua Fev 20, 2013 18:40
- 1 Respostas
- 2929 Exibições
- Última mensagem por young_jedi

Qua Fev 20, 2013 21:08
Matrizes e Determinantes
-
- Dada uma função, calcular os zeros
por Tixa11 » Sáb Nov 10, 2012 12:26
- 4 Respostas
- 2769 Exibições
- Última mensagem por Tixa11

Seg Nov 12, 2012 18:05
Funções
-
- Investigue o comportamento da funçaõ dada f(x)
por Ana Maria da Silva » Sex Mai 17, 2013 11:52
- 0 Respostas
- 1095 Exibições
- Última mensagem por Ana Maria da Silva

Sex Mai 17, 2013 11:52
Cálculo: Limites, Derivadas e Integrais
-
- Represente geometricamente a área dada:
por Ariel » Seg Out 17, 2016 10:10
- 0 Respostas
- 3315 Exibições
- Última mensagem por Ariel

Seg Out 17, 2016 10:10
Polinômios
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.