• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(CESCEM-72) Trinômio

(CESCEM-72) Trinômio

Mensagempor aline2010 » Dom Jul 25, 2010 10:57

O trinômio ax²+bx+c tem duas raízes reais e distintas;w e k são dois números reais não nulos. Então o trinômio a/w x²+kbx+wk²c
a) tem dusas raízes reais e distintas ou nenhuma raíz real, conforme o sinal de k;
b) pode ter duas, uma ou nenhuma raízes reais;
c) tem duas raízes reais e distintas se w e k forem ambos positivos, nada se podendo afirmar nos demais casos;
d) tem duas raízes reais e distintas ou nenhuma raíz real, conforme o sinal do produto wk;
e) tem sempre duas raízes reais e distintas;
aline2010
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Dom Jun 13, 2010 13:53
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matmática
Andamento: formado

Re: (CESCEM-72) Trinômio

Mensagempor Loretto » Dom Jul 25, 2010 16:23

Tendo o trinômio a/w x²+kbx+wk²c ; vamos justificar porque a alternativa a é falsa, e assim poderemos concluir as respectivas alternativas :

a) tem dusas raízes reais e distintas ou nenhuma raíz real, conforme o sinal de k;

As raízes do trinômio podem não ser distintas, para isso, basta o Delta ser igual a zero, essa condição não depende apenas do sinal de k, e sim dos valores de b, a e c . As outras alternativas também reference a raízes distintas referente ao sinal de w e k, mas não podemos afirmar que o sinal de w e k trará raízes reais distintas. A alternativa "e", remete a ter sempre duas raízes reais e distintas, e também é falso. Assim, na alternativa "b" fica mais precisa a resposta, pois as raízes desse polinômio pode ser dupla, uma ou nenhuma raiz real, conforme o valor de "a" e do seu discriminante.
Loretto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Dom Jul 25, 2010 01:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: exatas
Andamento: cursando

Re: (CESCEM-72) Trinômio

Mensagempor agnesrava » Seg Mai 28, 2012 13:24

A resposta segundo o livro Fundamentos de Matemática Elementar, é a letra E
agnesrava
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Mai 28, 2012 13:18
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.