• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Funções Continua

Funções Continua

Mensagempor CloudP4 » Qui Jun 24, 2010 00:02

Queria saber como faço para identificar uma função continua, vou pegar um exemplo:

f(x) = { x + 4, se x < 2
x - 1, se x >= 2}

Aproveitando o embalo, como faço para achar o calor de L e M para que a função seja continua

f(x) = { x³ - 2x² - 5x + 6 / x² - x - 6, se x é diferente de -2 e 3
L , se x = -2
M, se x = 3}

PS: Não consegui escrever a fórmula pelo Latex
CloudP4
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Jun 07, 2010 23:45
Formação Escolar: ENSINO MÉDIO
Área/Curso: Eng. Civil
Andamento: cursando

Re: Funções Continua

Mensagempor Tom » Sex Jul 02, 2010 02:57

Na funçao que você citou:

Se x<2, então f(x)=x+4 e a função é uma reta, portanto contínua.

Se x\le 2, então f(x)=x-1 e a função é uma reta, portanto contínua.

Se antes de x=2 e depois de x=2 a função é contínua, basta avaliar se x=2 é um ponto de descontinuidade, isto é, se o limite f(x) quando x tende a 2 pela direita é diferente do limite quando x tende a 2 pela esquerda.


Ora, o limite pela esquerda: f(2)=2+4=6 usando a lei para valores menores que 2
O limite pela direita: f(2)=2-1=1 usando a lei para valores maiores que 2

Como os limites são diferentes, então a função é descontínua sendo x=2 a abicissa do ponto de descontinuidade.
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59