por nan_henrique » Seg Jun 28, 2010 21:18
Determinar

que verifique

Tnetei fazendo como arco duplo:
mas não sei o valor de tgx
-
nan_henrique
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Qui Jun 24, 2010 18:33
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Tom » Sex Jul 02, 2010 23:58
Usando a fórmula de soma de arcos para a função tangente, temos:

, pois

Assim, se

Estudando o sinal das funções

e

, ambas de domínio

, observamos que :
Se

, então:

e

Se

, então:

e

Se

, então:

e

Assim

, isto é,

para

Finalmente,

para:
![x\in ]\frac{3\pi}{4};\frac{5\pi}{4}[\cup ]\frac{7\pi}{4};\frac{\pi}{4}[ x\in ]\frac{3\pi}{4};\frac{5\pi}{4}[\cup ]\frac{7\pi}{4};\frac{\pi}{4}[](/latexrender/pictures/5f991892b9f9dcf248ef971ea3dae86f.png)
Tom
-
Tom
- Usuário Parceiro

-
- Mensagens: 75
- Registrado em: Sex Jul 02, 2010 00:42
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Automação e Controle Industrial
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [trigonometria] trigonometria em triangulo qualquer
por biamassa00 » Sex Mai 25, 2012 22:19
- 0 Respostas
- 3473 Exibições
- Última mensagem por biamassa00

Sex Mai 25, 2012 22:19
Trigonometria
-
- (Trigonometria) problema trigonometria
por Luizap11 » Qui Dez 05, 2013 00:33
- 2 Respostas
- 5078 Exibições
- Última mensagem por Edunclec

Qui Dez 05, 2013 20:53
Trigonometria
-
- trigonometria
por Cleyson007 » Qua Set 24, 2008 19:44
- 2 Respostas
- 3272 Exibições
- Última mensagem por admin

Ter Set 30, 2008 19:08
Trigonometria
-
- trigonometria
por Micheline » Dom Jan 25, 2009 16:21
- 5 Respostas
- 4789 Exibições
- Última mensagem por Cleyson007

Seg Jan 26, 2009 17:27
Trigonometria
-
- Trigonometria
por Flavio » Sex Fev 13, 2009 21:29
- 5 Respostas
- 4911 Exibições
- Última mensagem por Molina

Seg Fev 16, 2009 01:53
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Exercicios de polinomios
Autor:
shaft - Qua Jun 30, 2010 17:30
Então, o exercicio pede para encontrar

.
Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !
Assunto:
Exercicios de polinomios
Autor:
Douglasm - Qua Jun 30, 2010 17:53
Bom, se desenvolvermos isso, encontramos:
Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):
Somando a primeira e a segunda equação:
Finalmente:
Até a próxima.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.