por gustavowelp » Sáb Jun 26, 2010 17:05
Boa tarde a todos.
Não sei como resolver tal sistema linear:
Seja o seguinte sistema linear
x + y + z = 6
2x – y + z = 3
-x + 3y + 2z = 11
cujo conjunto solução é {(a,b,c)}, pode-se afirmar que:
a) a + b - c = 0
b) c = a - b
c) a + b + c = 0
d) 2a + b = c
e) a = b e c = 0
Fiz até um pedaço e encontrei z = 2, eliminando o y nas duas primeiras equações (somando as duas equações) e eliminando o x na primeira e terceira equações
Mas depois me confundi todo.
Obrigado!!!
-
gustavowelp
- Usuário Parceiro

-
- Mensagens: 91
- Registrado em: Sex Jun 25, 2010 20:40
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: formado
por Douglasm » Sáb Jun 26, 2010 20:02
Olá gustavowelp. Eu gosto de resolver esse tipo de questão, montando uma matriz e a escalonando usando o algoritmo de Gauss (apesar de muitos não gostarem de fazer assim). Deste modo, eu vou postar aqui o link para o artigo explicando o algoritmo e postarei a sequência do escalonamento.
LINK:
http://rpanta.com/downloads/material/Gauss_01.PDFAgora vamos a sequência, lembrando que temos que operar com a matriz completa:

O sistema escalonado é:



Chegamos a:

E portanto a resposta é
letra a.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por gustavowelp » Dom Jun 27, 2010 08:40
Bom dia Douglas.
Muito obrigado pelo teu empenho em me ajudar.
Entretanto, esse caro amigo Gauss sabe muito... eheheheh
Eu sou um tanto leigo, e achei complicado (vi o PDF que mandaste)
Vou te perguntar se a solução que aprendi na escola pode ser utilizada:
São essas três equações:
x + y + z = 6
2x – y + z = 3
-x + 3y + 2z = 11
Olhando por cima, vemos que se SOMARMOS a primeira e a terceira, "matamos" o X
Se SOMARMOS a primeira com a segunda, "matamos" o Y
Nesse caso, tenho a variávez Z nas duas equações SOMADAS, uma com y e outra com x. Isolando X e Y, tenho uma equação que determina Z
Aí substituí o X e o Y na primeira equação pelas equações que obtive com as SOMAS.
Ficou assim:
y = (17 - 3z) / 4.
x = (9 - 2z) / 3.
Substituindo em x + y + z = 6, ficou:
(9 - 2z) / 3 + (17 - 3z) / 4 + z = 6. Encontrei z = 3
Depois substituo o "z" que encontrei nas equações resultantes da soma (que eliminaram uma das variáveis - aquelas em negrito logo acima)
Exemplo:
y = (17 - 3z) / 4 => y = (17 - 3.3) / 4 => y = 2
x = (9 - 2z) / 3 => x = (9 - 2.3) / 3 => x = 1
Pode ser assim?
Obrigado novamente.
-
gustavowelp
- Usuário Parceiro

-
- Mensagens: 91
- Registrado em: Sex Jun 25, 2010 20:40
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: formado
por Douglasm » Dom Jun 27, 2010 09:09
Sem dúvida que pode! Eu só fiz daquele outro jeito por achar mais eficiente (para sistemas maiores, por exemplo, escalonar através de manipulações algébricas pode ser muito trabalhoso e desnecessariamente complicado). Mas esse modo que usaste é o mais tradicional. =)
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Sistemas Lineares
por Cleyson007 » Sáb Mai 03, 2008 01:50
- 3 Respostas
- 6882 Exibições
- Última mensagem por admin

Dom Mai 04, 2008 13:51
Sistemas de Equações
-
- Sistemas lineares
por Catriane Moreira » Seg Set 06, 2010 18:32
- 1 Respostas
- 2375 Exibições
- Última mensagem por Molina

Seg Set 06, 2010 19:13
Sistemas de Equações
-
- sistemas lineares
por angeloka » Sáb Nov 27, 2010 17:59
- 1 Respostas
- 2506 Exibições
- Última mensagem por Neperiano

Sáb Nov 27, 2010 19:02
Sistemas de Equações
-
- sistemas lineares
por angeloka » Sáb Nov 27, 2010 22:10
- 0 Respostas
- 1727 Exibições
- Última mensagem por angeloka

Sáb Nov 27, 2010 22:10
Sistemas de Equações
-
- Sistemas Lineares
por Jeh MM » Ter Mar 29, 2011 21:57
- 1 Respostas
- 1619 Exibições
- Última mensagem por MarceloFantini

Ter Mar 29, 2011 22:32
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.