por carolnicoli » Sex Jun 25, 2010 22:32
(IME)- Determine o conjunto solução da equação sen³x + cos³x = 1- sen²x.cos²x.
Meu professor falou pra eu usar fatoração e foi o que eu fiz
sen³x + cos³x = 1- sen²x.cos²x
(senx + cosx).(sen²x-senx.cosx+cos²x) = 1 - sen²x.cos²x
(senx + cosx).(1-cos²x-senx.cosx+cos²x)= 1 - sen²x.cos²x
E agora? Como eu saio daqui?
Por favor, me ajudem!
Desde já, obrigada.
-
carolnicoli
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Jun 24, 2010 20:39
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por carolnicoli » Sáb Jun 26, 2010 14:50
nossa, muito obrigada! valeu mesmo!
o trabalho de vocês nesse site é fabuloso, parabéns!

-
carolnicoli
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Jun 24, 2010 20:39
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por thadeu » Sáb Jun 26, 2010 22:42
Sou eu quem devo lhe agradecer pelos elogios... estou sempre às ordens...
-
thadeu
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Out 19, 2009 14:05
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Conjunto da solução de equação
por lucastorres26 » Sex Mai 20, 2011 02:06
- 1 Respostas
- 2935 Exibições
- Última mensagem por Molina

Sex Mai 20, 2011 14:44
Matrizes e Determinantes
-
- conjunto soluçao da equaçao
por Dutt_Berzeerker » Sáb Nov 30, 2013 14:34
- 3 Respostas
- 3716 Exibições
- Última mensagem por Dutt_Berzeerker

Sáb Nov 30, 2013 15:18
Matrizes e Determinantes
-
- Conjunto solução
por Carlos28 » Qua Set 24, 2014 11:31
- 1 Respostas
- 1690 Exibições
- Última mensagem por Russman

Qui Set 25, 2014 17:51
Inequações
-
- Conjunto solução das equações.
por kael » Qua Mar 18, 2009 16:05
- 1 Respostas
- 17131 Exibições
- Última mensagem por Molina

Qua Mar 18, 2009 19:09
Matrizes e Determinantes
-
- [Fração] Conjunto Solução
por Lari » Qua Mar 21, 2012 22:21
- 1 Respostas
- 3246 Exibições
- Última mensagem por Juvenal

Sex Mar 23, 2012 12:50
Inequações
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.