por ptt » Seg Jun 21, 2010 20:38
Gente, voltei a estudar a algum tempo, e achei esse fórum, oque eu mais precisava, porém, estou com dificuldade pra resolver essa inequação. Procurei como resolver essa inequação, porém nada me esclareceu a dúvida
Resolva as inequações a seguir, no universo dos números reais (U=R)
1º (x - 3)^4 > 0
2º (x - 3)^4 < 0
Por favor, me ajudem com ela, me explicando como resolver ela.
Obrigado
Edit: Tentei de tudo, porém, não consigo entender por que a resposta do livro, li tudo sobre inequações, mas não consegui ainda intender por que a resposta da primeira inequação da 3, e a segunda da zero
-
ptt
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Jun 21, 2010 20:05
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Técnico em Eletrônica
- Andamento: formado
por Molina » Ter Jun 22, 2010 00:19
Boa noite.
Obrigado por confiar em nós.
Primeiro de tudo, lembre-se que uma inequação, na maioria dos casos, o resultado é um conjunto, e não apenas um único valor.
No exercício 1, por exemplo:

Você não vai achar apenas um valor e sim vários deles (um conjunto). Pois, você quer, os números que subtraindo 3 e elevando a 4 seja maior do que zero. Resolve-se da mesma forma que uma equação. Note que vou fazer de forma detalhada:

Podemos escrever essa expressão desta forma:

Lembre-se que qualquer número ao quadrado é maior ou igual a zero. Só será zero quando tiver

.
Mas,

. Significa que neste valor essa expressão é igual a zero (e não maior do que zero). Então não nos importa.
A Solução então é todos os reais, menos o 3:

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por MarceloFantini » Ter Jun 22, 2010 00:56
Apenas reescrevendo, pois é um conjunto solução: S =

- {3}.
E na segunda, o conjunto solução é vazio, pois não existe nenhum número real tal que elevado a quarta potência dê menor que zero.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Matémática básica
por drea70br » Dom Out 04, 2009 20:59
- 1 Respostas
- 6039 Exibições
- Última mensagem por Elcioschin

Dom Out 04, 2009 21:10
Álgebra Elementar
-
- Operação básica
por Fernanda Lauton » Qui Jun 17, 2010 15:40
- 11 Respostas
- 6206 Exibições
- Última mensagem por Fernanda Lauton

Seg Jun 21, 2010 18:13
Álgebra Elementar
-
- Equação básica
por SaraSFT » Ter Jul 03, 2012 06:12
- 1 Respostas
- 1403 Exibições
- Última mensagem por MarceloFantini

Ter Jul 03, 2012 22:23
Matemática Financeira
-
- Dúvida básica
por SaraSFT » Ter Jul 03, 2012 06:33
- 1 Respostas
- 1221 Exibições
- Última mensagem por MarceloFantini

Ter Jul 03, 2012 22:31
Matemática Financeira
-
- definiçao basica
por giboia90 » Dom Abr 07, 2013 21:17
- 1 Respostas
- 2003 Exibições
- Última mensagem por e8group

Dom Abr 07, 2013 22:06
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.