• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema Com Inequação do Exponencial

Problema Com Inequação do Exponencial

Mensagempor chenz » Sáb Jun 19, 2010 17:13

Pessoal, estou com o seguinte problema e não consigo chegar ao resultado:
\left(\frac{2}{3} \right)^{2x}-\frac{13}{6}*\left(\frac{2}{3} \right)^x+1\geq0
\left(\left(\frac{2}{3} \right)^x \right)^2-\frac{13}{6}*\left(\frac{2}{3} \right)^x+1\geq0
\left(\frac{2}{3} \right)^x=y
{y}^{2}-\frac{13}{6}*y+1\geq0
Multiplicando por 6....
6*{y}^{2}-13*y+6\geq0
a=6;b=-13;c=6
\Delta={b}^{2}-4*a*c
\Delta=\left(-13 \right)^2-4*6*6
\Delta=25
\frac{13\pm5}{12}
y''=\frac{3}{2}
y'=\frac{2}{3}
x'=\left(\frac{2}{3}\right)^\frac{2}{3}
x''=\left(\frac{2}{3}\right)^\frac{3}{2}
Porém a resposta é:
x'\leq-1 e
x''\geq1

Onde estou errando? A sequencia de cálculo está correta?

Obrigado a todos....
chenz
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Mai 17, 2010 10:33
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: formado

Re: Problema Com Inequação do Exponencial

Mensagempor Molina » Sáb Jun 19, 2010 21:31

Boa noite!

Aqui está seu erro:

chenz escreveu:y''=\frac{3}{2}
y'=\frac{2}{3}
x'=\left(\frac{2}{3}\right)^\frac{2}{3}
x''=\left(\frac{2}{3}\right)^\frac{3}{2}


Os valores que você encontra são y' e y". Você está substituindo no x e não no y.

Deixe o expoente x como ele está e substitua os valores encontrados após a igualdade, na condição inicial que você mesmo deu.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Problema Com Inequação do Exponencial

Mensagempor chenz » Dom Jun 20, 2010 12:35

Obrigado Diego Molina !!!! Valeu mesmo....Não acreditei que a resposta estava na minha frete....hehehehehehe....Obrigado!!!

Cristiano Henz
chenz
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Mai 17, 2010 10:33
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}