• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Soma de uma série em Progressão

Soma de uma série em Progressão

Mensagempor Carolziiinhaaah » Qua Jun 16, 2010 12:06

Calcule a soma da série: \frac{1}{3} + \frac{2}{9} + \frac{3}{27} + \frac{4}{81} + ... .

gabarito: 3/4
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Soma de uma série em Progressão

Mensagempor Elcioschin » Qua Jun 16, 2010 13:18

1/3 + 2/9 + 3/27 + 4/81 + .....

1/3 + (1/9 + 1/9) + (1/27 + 2/27) + (1/81 + 3/81) + .....

(1/3 + 1/9 + 1/27 + 1/81 + ....) + (1/9 + 2/27 + 3/81 + .....)

Soma dos termos do primeiro parenteses é uma PG infinita de razão 1/3 ----> Sa = (1/3)/(1- 1/3) ----> Sa = 1/2

Segundo parenteses ----> 1/9 + 2/27 + 3/81 + .....

1/9 + (1/27 + 1/27) + (1/181 + 2/81) + .....

(1/9 + 1/27 + 1/81 + ....) + (1/27 + 2/81 + .....)

Soma dos termos do primeiro parenteses é uma PG infinta de razão 1/3 ----> Sb = (1/9)/(1- 1/3) ----> Sa = 1/6

Segundo parenteses ----> 1/27 + 2/81 + .......

1/27 + (1/81 + 1/81) + .....

(1/27 + 1/81 + .....) + (1/81 + .....)

Soma dos termos do primeiro parenteses é uma PG infinita de razão 1/3 ----> Sa = (1/27)/(1- 1/3) ----> Sc = 1/18

E assim por diante, teremos ----> S = Sa + Sb + Sc + ...... ----> S = 1/2 + 1/6 + 1/18 + .....

Temos uma nova PG infinta de razão 1/3 -----> S = (1/2)/(1 - 1/3) -----> S = 3/4
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)