• Anúncio Global
    Respostas
    Exibições
    Última mensagem

função dispêndio

função dispêndio

Mensagempor jmario » Qua Jun 09, 2010 09:01

As funções dipêndios são as seguintes:

Dx(px,py,r)=\frac{r\sqrt[]{Px}}{\sqrt[]{Px}+\sqrt[]{Py}}
Dy(px,py,r)=\frac{r\sqrt[]{Py}}{\sqrt[]{Px}+\sqrt[]{Py}}

Por que a razão entre os dispêndios se transforma em:
\frac{Dx(px,py,r}{Dy(px,py,r}=\frac{\sqrt[]{Px}}{\sqrt[]{Py}}

Aí se calcula a derivada dessa razão com o ln, não entendi porque usar o logarítmo natural na derivada
\sigma=\frac{d ln\left[\frac{Dx(px,py,r)}{Dy(px,py,r)}\right]}{d ln \left(\frac{Px}{Py} \right)}
Editado pela última vez por jmario em Qua Jun 09, 2010 09:21, em um total de 1 vez.
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Re: função dispêndio

Mensagempor jmario » Qua Jun 09, 2010 09:15

jmario escreveu:As funções dipêndios são as seguintes:

Dx(px,py,r)=\frac{r\sqrt[]{Px}}{\sqrt[]{Px}+\sqrt[]{Py}}
Dy(px,py,r)=\frac{r\sqrt[]{Py}}{\sqrt[]{Px}+\sqrt[]{Py}}

Por que a razão entre os dispêndios se transforma em:
\frac{Dx(px,py,r)}{Dy(px,py,r)}=\frac{\sqrt[]{Px}}{\sqrt[]{Py}}

A fórmula da elasticidade de substituição é dada por:
ES=\frac{TmgS(px,py)}{\frac{py}{px)}} \frac{d(\frac{py}{px)}}{dTmgS(px,py)}

Aí se chega nessa equação com apenas a derivada dessa razão com o ln, não entendi porque usar o logarítmo natural na derivada
\sigma=\frac{d ln\left[\frac{Dx(px,py,r)}{Dy(px,py,r)}\right]}{d ln \left(\frac{Px}{Py} \right)}


Alguém pode me ajudar
Grato
José Mario
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Re: função dispêndio

Mensagempor jmario » Qua Jun 09, 2010 09:22

jmario escreveu:
jmario escreveu:As funções dipêndios são as seguintes:

Dx(px,py,r)=\frac{r\sqrt[]{Px}}{\sqrt[]{Px}+\sqrt[]{Py}}
Dy(px,py,r)=\frac{r\sqrt[]{Py}}{\sqrt[]{Px}+\sqrt[]{Py}}

Por que a razão entre os dispêndios se transforma em:
\frac{Dx(px,py,r)}{Dy(px,py,r)}=\frac{\sqrt[]{Px}}{\sqrt[]{Py}}

A fórmula da elasticidade de substituição é dada por:
ES=\frac{TmgS(px,py)}{\frac{py}{px)}} \frac{d(\frac{py}{px)}}{dTmgS(px,py)}

Aí se chega nessa equação com apenas a derivada dessa razão com o ln, não entendi porque usar o logarítmo natural na derivada
\sigma=\frac{d ln\left[\frac{Dx(px,py,r)}{Dy(px,py,r)}\right]}{d ln \left(\frac{Px}{Py} \right)}


Alguém pode me ajudar
Grato
José Mario
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Re: função dispêndio

Mensagempor jmario » Qua Jun 09, 2010 09:23

jmario escreveu:
jmario escreveu:As funções dipêndios são as seguintes:

Dx(px,py,r)=\frac{r\sqrt[]{Px}}{\sqrt[]{Px}+\sqrt[]{Py}}
Dy(px,py,r)=\frac{r\sqrt[]{Py}}{\sqrt[]{Px}+\sqrt[]{Py}}

Por que a razão entre os dispêndios se transforma em:
\frac{Dx(px,py,r)}{Dy(px,py,r)}=\frac{\sqrt[]{Px}}{\sqrt[]{Py}}

A fórmula da elasticidade de substituição é dada por:
ES=\frac{TmgS(px,py)}{\frac{py}{px)}} \frac{d(\frac{py}{px)}}{dTmgS(px,py)}

Aí se chega nessa equação com apenas a derivada dessa razão com o ln, não entendi porque usar o logarítmo natural na derivada
\sigma=\frac{d ln\left[\frac{Dx(px,py,r)}{Dy(px,py,r)}\right]}{d ln \left(\frac{Px}{Py} \right)}


Alguém pode me ajudar
Grato
José Mario

jmario escreveu:
jmario escreveu:
jmario escreveu:As funções dipêndios são as seguintes:

Dx(px,py,r)=\frac{r\sqrt[]{Px}}{\sqrt[]{Px}+\sqrt[]{Py}}
Dy(px,py,r)=\frac{r\sqrt[]{Py}}{\sqrt[]{Px}+\sqrt[]{Py}}

Por que a razão entre os dispêndios se transforma em:
\frac{Dx(px,py,r)}{Dy(px,py,r)}=\frac{\sqrt[]{Px}}{\sqrt[]{Py}}

A fórmula da elasticidade de substituição é dada por:
ES=\frac{TmgS(px,py)}{\frac{py}{px)}} \frac{d(\frac{py}{px)}}{dTmgS(px,py)}

Aí se chega nessa equação com apenas a derivada dessa razão com o ln, não entendi porque usar o logarítmo natural na derivada
\sigma=\frac{d ln\left[\frac{Dx(px,py,r)}{Dy(px,py,r)}\right]}{d ln \left(\frac{Px}{Py} \right)}


Alguém pode me ajudar
Grato
José Mario
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Re: função dispêndio

Mensagempor MarceloFantini » Qua Jun 09, 2010 20:59

José Mário, não poste a mesma mensagem repetidas vezes em um curto intervalo de tempo. Isso ocupa muito espaço a troco de nada, não trará sua resposta mais rápido, é perda de tempo e é no mínimo não muito legal para com os outros.

Sobre a sua questão, quando você faz a razão \frac{Dx(px,py,r)}{Dy(px,py,r)} = \frac{r \sqrt {Px}} {\sqrt {Px} + \sqrt {Py}} \cdot \frac{\sqrt {Px} + \sqrt {Py}} {r \sqrt {Py}} = \frac {\sqrt {Px}}{\sqrt {Py}}, os r cancelam-se e a mesma coisa com a soma das raízes.

E não sei porque derivar usando o logaritmo natural.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.