por roberoliveira » Ter Jun 08, 2010 20:04
Qual a resposta correta para o problema abaixo, 98 ou 210? Foi-me falado por colegas no curso, que ele é resolvido através de permutações circulares, isso é correto?
Problema:
De quantas maneiras posso convidar 5 amigos de 11, sendo que dentre estes 11 há dois casais cujos membros não podem ser convidados sozinhos.
Alguém poderia me ajudar?
Att, Robert.
-
roberoliveira
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Ter Jun 08, 2010 19:22
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Tecnologia da Informação
- Andamento: cursando
por Molina » Qua Jun 09, 2010 00:00
Boa noite.
Cheguei como resposta
98 também. Mas gostaria que outra pessoa (ou você mesmo) confirmasse a resposta.
Fiz da seguinte forma:
Dividi em 4 casos:
Caso 1) Ambos os casais não são convidados, restam 5 vagas.
Caso 2) Um dos casais é convidado, restam 3 vagas.
Caso 3) Apenas o outro casal é convidado, restam 3 vagas novamente.
Caso 4) Ambos os casais são convidados, resta 1 vaga.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por roberoliveira » Qua Jun 09, 2010 20:15
Boa Noite Molina
Primeiramente muito obrigado pela resolução.
Eu cheguei a C(7,5) + 2*C(7,3) + 7 = 98.
O que me desconcertou neste problema foi o fato de sua resposta ser 210 no livro onde ele aparece (Matemática Discreta, Seymour Lipschutz) e para complicar o amigo que me propôs este problema, o resolveu através de um cálculo estranho* com uso da ideia de permutação circular, que ao meu ver não tem aplicação no contexto desse problema.
* Ele contou cada casal como 1 pessoa (A,B = AB conta como 1 mas continuam sendo 2 pessoas) e usou C9,3 para o caso de um ou dois casais e C9,5 para o caso de nenhum casal. Justificando C9,3 com a fórmula de permutações circulares. Apesar disso não ter uma lógica infálivel ao meu ver**, a soma C9,3 + C9,5 = 210. Enfim acho que tal fato foi uma enorme coincidência, rara de se ver diga-se de passagem.
**Ambas combinações não funcionam em todos casos casos, elas permitem conjuntos ora com mais ora com menos de 5 pessoas.
Att, Robert.
-
roberoliveira
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Ter Jun 08, 2010 19:22
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Tecnologia da Informação
- Andamento: cursando
por angeruzzi » Qui Jun 10, 2010 04:06
Olá roberoliveira e molina,
Provavelmente há um erro no enunciado, a solução 210 seria para o caso de apenas 1 casal na turma, onde a solução seria a seguinte:
Todas as combinações possíveis dos 11 amigos em grupos de 5 (

) menos as combinações onde o casal está separado (

, são 2 situações onde eu já selecionei um dos parceiros e faltam 4 vagas a serem preenchidas dentre os amigos restantes, sendo apenas 9 pq não vou selecionar o outro integrante do casal ).

Segui a mesma lógica acima aplicando para 2 casais e também cheguei em 98. Apesar de ser uma solução mais complicada confirma a resposta:
Combinação Completa (

) menos as 4 situações onde apenas 1 membro dentre os 2 casais é chamado (

), menos as 4 situações onde 1 membro de cada casal são chamados (

), menos as 4 situações onde 1 casal e mais 1 integrante do outro casal são chamados (

).

E realmente a lógica do amigo do roberoliveira não fez qualquer sentido para mim.
-
angeruzzi
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Dom Mai 16, 2010 00:50
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Ciências da Computação
- Andamento: formado
por roberoliveira » Sex Jun 11, 2010 15:27
Acertou em cheio Angeruzzi, realmente o erro está na interpretação do enunciado cuja forma original é a seguinte:
"Uma mulher tem 11 amigos próximos. De quantas maneiras ela pode convidar cinco deles para jantar, se dois são casados e não comparecem separadamente?"
Foi uma falha de interpretação minha e do meu amigo.
Muito Obrigado.
Att, Robert
Editado pela última vez por
roberoliveira em Sex Jun 11, 2010 16:34, em um total de 2 vezes.
-
roberoliveira
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Ter Jun 08, 2010 19:22
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Tecnologia da Informação
- Andamento: cursando
por angeruzzi » Sex Jun 11, 2010 15:57
Agora ficou claro roberoliveira, o enunciado diz 2 amigos casados e não 2 casais. Então a minha solução se encaixa no problema.
Desculpe ser chato, mas é que já puxaram minha orelha aqui no fórum, para novas dúvidas abra um novo tópico, as respostas devem ser utilizadas apenas para discussão do problema inicial proposto.
-
angeruzzi
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Dom Mai 16, 2010 00:50
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Ciências da Computação
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problema de análise combinatória
por Fernanda Lauton » Seg Mar 29, 2010 17:41
- 5 Respostas
- 5503 Exibições
- Última mensagem por Elcioschin

Sex Abr 09, 2010 11:07
Estatística
-
- Problema de análise combinatória
por RJ1572 » Dom Abr 04, 2010 13:28
- 2 Respostas
- 2761 Exibições
- Última mensagem por RJ1572

Dom Abr 04, 2010 21:27
Estatística
-
- [analise combinatoria] problema!
por santtus » Qua Fev 20, 2013 02:18
- 1 Respostas
- 2078 Exibições
- Última mensagem por Rafael16

Qua Fev 20, 2013 11:57
Análise Combinatória
-
- Problema de análise combinatória.
por Sobreira » Seg Set 15, 2014 01:03
- 1 Respostas
- 4315 Exibições
- Última mensagem por DanielFerreira

Dom Set 21, 2014 14:12
Análise Combinatória
-
- Problema de compinação - análise combinatória
por Fernanda Lauton » Seg Abr 05, 2010 18:07
- 1 Respostas
- 2582 Exibições
- Última mensagem por estudandoMat

Seg Abr 05, 2010 19:14
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.