Sabe-se que o lucro total de uma empresa é dado por L(q)=R(q)-C(q), onde L é o lucro total, R a receita total e C o custo total da produção. Pede-se, numa empresa onde:
e

onde: q é a quantidade produzida. E pergunta-se:
a)o nível de produção q para que o lucro seja máximo; Resposta-> 15
b)o valor do lucro máximo. Resposta-> 410
Preciso de ajuda, pois não consegui chegar a esses valores.
Obrigado!!!

, que nada mais é do que:


que faz essa função ser maior possível. A ferramenta que nos permite calcular isso é o famoso
(X vértice). Para usar as notações do problema, usaremos
que é dado pela fórmula:
e
que estão na função 
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)