• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cilindro.

Cilindro.

Mensagempor nandokmx » Qua Jun 02, 2010 11:40

Para cortar um queijo no formato de um cilindro com o raio R medindo 20cm, corta-se primeiro um cilindro concêntrico de raio r < R e fatia-se como na figura:
Imagem



Para que os dois pedaços obtidos tenham o mesmo volume, o valor de r deve ser:


a) 10 cm
b) 15 cm
c) 5?2 cm
d) 10?2 cm

Ta ai uma questão que me deixou irritado. Agradeço desde já pelo apoio.
nandokmx
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mai 20, 2010 10:42
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Cilindro.

Mensagempor Molina » Qua Jun 02, 2010 18:59

nandokmx escreveu:Para cortar um queijo no formato de um cilindro com o raio R medindo 20cm, corta-se primeiro um cilindro concêntrico de raio r < R e fatia-se como na figura:
Imagem



Para que os dois pedaços obtidos tenham o mesmo volume, o valor de r deve ser:


a) 10 cm
b) 15 cm
c) 5?2 cm
d) 10?2 cm

Ta ai uma questão que me deixou irritado. Agradeço desde já pelo apoio.

Erro na visualização da figura, amigo.

Alguém consegue visualizar normalmente?

Abraços!
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Cilindro.

Mensagempor Cleyson007 » Qua Jun 02, 2010 19:08

Boa noite Molina!

Molina, estive conectado ao fórum no início da tarde e consegui visualizar a imagem normalmente.. a mensagem pode ter sido editada..

Realmente.. agora dá um erro: "Não é possível conectar-se" e dá falha no carregamento da página.

Vamos aguardar o nandokmx enviá-la novamente.

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Cilindro.

Mensagempor MarceloFantini » Qui Jun 03, 2010 03:43

Volume do cilindro concêntrico: V_1 = \pi r^2 h. Volume do pedaço restante: V_2 = \pi (R^2 - r^2) h. Volumes iguais: V_1 = V_2 \Rightarrow \pi r^2 h = \pi (R^2 - r^2) h \Rightarrow 2r^2 = R^2 \Rightarrow r = \frac{ \sqrt {2} R} {2}. Numericamente, com R=20cm, isso dá r = 10 \sqrt {2}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}