por Karina » Sáb Mai 29, 2010 17:22
(Unisinos - RS) Considere o sistema

Se x e y representam a solução desse sistema, então o valor de (x+y) é igual a:
a) 2
B) 3
c) 4
D) 5
e) 9
Não to conseguindo resolver, a resposta certa é a D
-
Karina
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Ter Fev 09, 2010 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Enfermagem
- Andamento: cursando
por Molina » Sáb Mai 29, 2010 18:36
Boa tarde.
Some as duas equações. Assim o

irá se anular. Com isso você ficará com uma equação de apenas uma variável, x. Basta usar as propriedades exponenciais para descobrir seu valor. Depois basta substituir esse valor encontrado em qualquer uma das equações, ficando com apenas y de incognita. Use as propriedades exponenciais e achará o valor de y.
Bom estudo

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Karina » Sex Jun 04, 2010 14:24
Ta isso eu resolvi, mas não consigo sair dessas exponenciais

-
Karina
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Ter Fev 09, 2010 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Enfermagem
- Andamento: cursando
por MarceloFantini » Sex Jun 04, 2010 16:36
Somando:

. Jogando na segunda equação:

.

Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- sistema de equação exponencial
por Debylow » Seg Dez 03, 2012 12:56
- 1 Respostas
- 1849 Exibições
- Última mensagem por young_jedi

Seg Dez 03, 2012 16:08
Equações
-
- [sistema linear homogeneo] Como resolver esse sistema
por amigao » Qua Jul 02, 2014 14:49
- 1 Respostas
- 2963 Exibições
- Última mensagem por Russman

Qua Jul 02, 2014 18:38
Álgebra Linear
-
- [Sistema Linear] MACK-SP: Sistema de Equações
por ALF » Sex Ago 26, 2011 13:24
- 1 Respostas
- 4348 Exibições
- Última mensagem por LuizAquino

Dom Ago 28, 2011 12:57
Sistemas de Equações
-
- [SISTEMA] problema que envolve um sistema
por brunnkpol » Qui Jan 02, 2014 22:57
- 2 Respostas
- 2576 Exibições
- Última mensagem por brunnkpol

Seg Jan 06, 2014 21:37
Sistemas de Equações
-
- [Função exponencial] Exercício sobre função exponencial
por fff » Ter Jan 07, 2014 17:51
- 3 Respostas
- 3879 Exibições
- Última mensagem por fff

Qua Jan 08, 2014 06:47
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.