• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistema de exponencial

Sistema de exponencial

Mensagempor Karina » Sáb Mai 29, 2010 17:22

(Unisinos - RS) Considere o sistema {3}^{x}+{2}^{y}= 17

{3}^{x}-{2}^{y}= 1 Se x e y representam a solução desse sistema, então o valor de (x+y) é igual a:

a) 2
B) 3
c) 4
D) 5
e) 9

Não to conseguindo resolver, a resposta certa é a D
Karina
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Fev 09, 2010 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Enfermagem
Andamento: cursando

Re: Sistema de exponencial

Mensagempor Molina » Sáb Mai 29, 2010 18:36

Boa tarde.

Some as duas equações. Assim o 2^y irá se anular. Com isso você ficará com uma equação de apenas uma variável, x. Basta usar as propriedades exponenciais para descobrir seu valor. Depois basta substituir esse valor encontrado em qualquer uma das equações, ficando com apenas y de incognita. Use as propriedades exponenciais e achará o valor de y.

Bom estudo :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Sistema de exponencial

Mensagempor Karina » Sex Jun 04, 2010 14:24

Ta isso eu resolvi, mas não consigo sair dessas exponenciais :$
Karina
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Fev 09, 2010 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Enfermagem
Andamento: cursando

Re: Sistema de exponencial

Mensagempor MarceloFantini » Sex Jun 04, 2010 16:36

Somando: 2 \cdot 3^x = 18 \Rightarrow 3^x = 3^2 \Rightarrow x = 2. Jogando na segunda equação: 2^y = 8 \Rightarrow 2^y = 2^3 \Rightarrow y = 3.

x+y = 2+3 = 5
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59