• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função

Função

Mensagempor JailsonJr » Sex Mai 14, 2010 07:10

Se f(x)=\sqrt{2x+3} , então [f( \sqrt{2} ) - f( - \sqrt{2} )]^2 é igual a:

Resp.: 4
;)
JailsonJr
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Mai 14, 2010 06:51
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Função

Mensagempor vyhonda » Sex Mai 14, 2010 11:12

Sabendo que f(x)=\sqrt[]{2x + 3}, basta substituir \sqrt[]{2} em x, assim:

f(\sqrt[]{2}) = \sqrt[]{2\sqrt[]{ 2} + 3} => I
f(-\sqrt[]{2}) = \sqrt[]{(2 . - \sqrt[]{ 2}) + 3} => II

Substituindo Equação I e II na expressão { [ f(\sqrt[]{2}) - f(-\sqrt[]{2})  ] }^{2}

{[ \sqrt[]{2\sqrt[]{2}+3} - \sqrt[]{(2. - \sqrt[]{2})+3} ]}^{2}, temos o Quadrado da Diferença

Aplicando fatoração::

2\sqrt[]{2}+3 -2[\sqrt[]{2\sqrt[]{2}+3}.\sqrt[]{-2\sqrt[]{2}+3}] + (-2\sqrt[]{2} + 3)

2\sqrt[]{2} -2\sqrt[]{2} +3+ 3  -2[\sqrt[]{2\sqrt[]{2}+3}.\sqrt[]{-2\sqrt[]{2}+3}]

6  -2[-4.2 + 6\sqrt[]{2} - 6\sqrt[]{2} + 9]

6  -2[-8 + 9]

6 - 2[1]

Portanto Resposta = 4.

Quaquer dúvida na conta, é só perguntar

Bons estudos!
vyhonda
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Jan 17, 2010 20:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Materiais - Unesp
Andamento: cursando

Re: Função

Mensagempor JailsonJr » Sex Mai 14, 2010 12:00

Obrigado, entendi perfeitamente! :-D
JailsonJr
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Mai 14, 2010 06:51
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.