• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Probabilidade

Probabilidade

Mensagempor Douglaspimentel » Seg Mai 10, 2010 14:54

Um baralho comum consiste de 52 cartasseparadas em 4 naipes com 13 cartas de cada um.
Para cada naipe , os valores são 2,3,4,5,6,7,8,9,10,J,Q,K e A. Um baralho comum é embaralhado.
Qual a probabilidade de que as 4 cartas do topo tenham:

a) Valores diferentes?
b) Naipes diferenres?
Douglaspimentel
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Sex Mar 05, 2010 12:42
Formação Escolar: ENSINO MÉDIO
Área/Curso: nada
Andamento: cursando

Re: Probabilidade

Mensagempor luucas » Qui Mai 13, 2010 22:16

alguém pode me ajudar em estatistica estou com muita dificuldade em resposder este exercicio.

Através de pesquisas, identificou-se que os candidatos a vendedor, despendem, em média, em um dos testes para contratação, 50 minutos em média com desvio padrão de 15 minutos. A distribuição do tempo de resposta é aproximadamente normal.

a) Que porcentagem de candidatos levará menos de 50 minutos para concluir o teste?

b) Que porcentagem não terminará o teste se o tempo máximo concedido é de 90 minutos?

c) Se 50 candidatos fazem o teste, quantos podem esperar que o terminem nos primeiros 40 minutos?


obrigado!
luucas
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mai 13, 2010 21:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Probabilidade

Mensagempor Douglasm » Sex Mai 14, 2010 12:20

Primeiramente: Lucas, caso queira ajuda para solucionar um problema, abra um novo tópico.

Agora respondendo a pergunta do Douglas:

Comecemos determinando o número de casos possíveis (T):

T = C_{52}^4 = 270725

Esse número é o total de combinações de 4 cartas, haja vista que a ordem em que elas aparecem não é relevante.

Agora passemos a letra A:

Nessa situação, os casos favoráveis serão aqueles em que cartas de mesmo valor não aparecem na combinação. Então temos:

A = \frac{52 . 48 . 44 . 40}{4!} = 183040

Obs: Acima foi feito o seguinte raciocínio: Inicialmente a primeira carta pode ser qualquer uma (52); a segunda pode ser qualquer uma menos as quatro com o mesmo valor da primeira; a terceira pode ser qualquer uma menos as oito cartas correspondentes aos valores da primeira e da segunda; a quarta pode ser qualquer uma menos as 12 cartas correspondentes aos valores anteriores (lembrando que cada carta tem 4 naipes). Levando em conta que a ordem que elas aparecem é irrelevante, devemos dividir esse produto por 4! (que são as permutações das cartas entre si).

A probabilidade é, portanto:

P(A) = \frac{183040}{270725} = \frac{2816}{4165} \approx 67,6 \%

Letra B:

B = \frac{52 . 39 . 26 . 13}{4!} = 28561

(Foi feito um raciocício análogo ao anterior)

P(B) = \frac{28561}{270725} = \frac{2197}{20825} \approx 10,5\%

Seria interessante se você tivesse a resposta para conferirmos. Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?