• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determine os valores de m

Determine os valores de m

Mensagempor manuoliveira » Qui Mai 06, 2010 17:48

Determine os valores de m, de modo que a equação cos² x + 2m cos x + m² - 1 = 0 admita raízes.

Eu sei que o cosseno tem que variar de - 1 a 1. E achei as raízes r1= -m -1 e r2= -m +1...
E agora...??

Resposta: -2 ? m ? 2
manuoliveira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 61
Registrado em: Qui Abr 01, 2010 19:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: Determine os valores de m

Mensagempor MarceloFantini » Qui Mai 06, 2010 23:39

O cosseno está aí só pra confundir, é só resolver uma equação do segundo grau e impor discriminante maior ou igual a zero.

\Delta = b^2 -4ac = (2m)^2 -4 \cdot (1) \cdot (m^2 -1) = 4m^2 -4m^2 +4 = 4

Ou seja, esse discriminante SEMPRE será maior que zero, logo a equação dada sempre terá duas raízes, qualquer m (\forall m).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Determine os valores de m

Mensagempor Douglasm » Sex Mai 07, 2010 09:22

Bom dia. Eu vou discordar da resposta de Fantini. Mesmo que o discriminante seja sempre positivo, estamos falando de cos x e não devemos deixar de aplicar os limites em que as raízes devem se encontrar para que sejam reais. Uma amostra disso é que se considerarmos m = 3, por exemplo, não teremos raízes reais (segue abaixo um link no wolfram com essa demonstração):

http://www.wolframalpha.com/input/?i=(cos+x)^2+%2B+6+cos+x+%2B+8+%3D+0+

Enfim, como a própria Manu já determinou as raízes é só colocarmos elas entre -1 e 1:

cos x = -m-1

-1 \leq -m-1 \leq  1

-2 \leq m \leq 0 - 1ª condição

cos x = -m+1

-1 \leq -m+1 \leq  1

0 \leq m \leq 2 - 2ª condição

Agora unindo as duas condições:

-2 \leq m \leq 2

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Determine os valores de m

Mensagempor MarceloFantini » Sáb Mai 08, 2010 00:40

Obrigado pelo esclarecimento Douglas! Manu, esqueça o que eu falei e siga o Douglas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}