por jmario » Sex Mai 07, 2010 13:51
Qual o resultado da seguinte derivada

Não consigo chegar no resultado do livro

Alguém pode me ajudar como chegar nesse resultado?
-
jmario
- Usuário Dedicado

-
- Mensagens: 48
- Registrado em: Qui Abr 15, 2010 12:23
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: economia
- Andamento: formado
por Neperiano » Sex Mai 07, 2010 14:14
Ola
Note que é uma multiplicação então deve-se se seguir a regra e alem do mais ainda tem uma função dentro da outra, que resulta em mais outra regra
Primeiro comece derivando as duas equações
Utilize u e v para ajudar
u=x
v = u^3 +2x
f(v) = v^3
Depois disso só é necessario deriva-las por suas regras, não se esqueca de substitui o u e o v,
A regra da multiplicação é
Derivada a primeira equação vezes a segunda igual mais a primeira normal vezes a derivada da segunda
Para derivar a segunda voce utiliza u tambem
u=4x+5
f(u)= u^2
Espero ter ajudado
Qualquer duvida
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por Elcioschin » Sex Mai 07, 2010 14:43
f(x) = (x³ + 2x)³*(4x + 5)² ----> Regra do produto ----> f(x) = g(x)*h(x) ----> f '(x) = g(x)*h(x)' + h(x)*g(x)'
f '(x) = (x³ + 2x)³*[(4x + 5)²]' + (4x + 5)²*[(x³ + 2x)³]'
f '(x) = (x³ + 2x)³*[2*(4x + 5)*4] + (4x + 5)²*[3*(x³ + 2x)²*(3x² + 2)]
f '(x) = 8*(x³ + 2x)³*(4x + 5) + 3*(4x + 5)²*(x³ + 2x)²*(3x² + 2)
Colocando em evidência (x³ + 2x)²(4x + 5):
f '(x) = (x³ + 2x)²*(4x + 5)*[8*(x³ + 2x) + 3*(4x + 5)*(3x² + 2)]
f '(x) = (x³ + 2x)²*(4x + 5)*(8x³ + 16x + 36x³ + 45x² + 24x + 30)
f '(x) = (x³ + 2x)²*(4x + 5)*(44³ + 45x² + 40x + 30)
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por jmario » Sex Mai 07, 2010 22:14
Muito obrigado
Agora eu tenho mais um a dúvida: a função é a seguinte
f(x) =

A primeira derivada dá

Até aí tudo bem
e a segunda derivada

Como eu chego nessa equação, eu não consigo chegar
Grato
Mario
-
jmario
- Usuário Dedicado

-
- Mensagens: 48
- Registrado em: Qui Abr 15, 2010 12:23
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: economia
- Andamento: formado
por Elcioschin » Sex Mai 07, 2010 23:15
Mario
A regra do fórum é postar apenas 1 questão por tópico.
Vou responder apenas porque é um problema similar.
1) Mostrei para você no problema original que tudo se resumia na Regra do Produto e simples operações algébricas.
2) O seu problema atual é similar e vc acertou na derivada primeira. Não entendo porque não sabe fazer a derivada 2ª.
Veja como é simples:
f '(x) = (4x)*(x² - 9)
f "(x) = 4x*(x² - 9)' + (x² - 9)*(4x)'
f "(x) = 4x*(2x) + (x² - 9)*(4)
f "(x) = 8x² + 4*(x² - 9) ----> Mesma coisa que f "(x) = 2*(2x)*2x) + 2*(x² - 9)*2
Qual é a sua dúvida ????
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada] Ajuda com calculo de derivada de função quociente
por alienpuke » Dom Out 25, 2015 15:31
- 1 Respostas
- 10492 Exibições
- Última mensagem por Cleyson007

Dom Out 25, 2015 16:47
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada]derivada de função de raiz cúbica
por armando » Sáb Jul 20, 2013 15:22
- 4 Respostas
- 14566 Exibições
- Última mensagem por armando

Dom Jul 21, 2013 22:17
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Achar a derivada de uma função
por caiofisico » Seg Set 05, 2011 20:18
- 4 Respostas
- 3643 Exibições
- Última mensagem por caiofisico

Ter Set 06, 2011 19:44
Cálculo: Limites, Derivadas e Integrais
-
- ]Derivada de uma função] derivada com raiz
por Leandro_Araujo » Ter Mar 06, 2012 01:11
- 5 Respostas
- 8329 Exibições
- Última mensagem por LuizAquino

Ter Mar 06, 2012 13:40
Cálculo: Limites, Derivadas e Integrais
-
- Derivada de uma função
por Vitali » Qui Mai 27, 2010 11:20
- 2 Respostas
- 2058 Exibições
- Última mensagem por MarceloFantini

Qui Mai 27, 2010 18:37
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.