• Anúncio Global
    Respostas
    Exibições
    Última mensagem

diferenciável

diferenciável

Mensagempor jmario » Qua Abr 28, 2010 09:50

Dada a função

g(x)= x, se x > 1
x^3, se x < 1

A pergunta é:
a função g é diferenciável em x = 1?
Eu tentei de várias formas e não consegui resolver

Alguém poderia me ajudar
Grato
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Re: diferenciável

Mensagempor Neperiano » Qua Abr 28, 2010 12:40

Ola

Eu naum entendi bem a questão, mas acredito que seja assim, se a função g deriva em x=1, como x=1 não pertence ao gráfico, acredito que não é diferenciavel

Mas se não for isto volte a escrever que vou tentar entender
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: diferenciável

Mensagempor Elcioschin » Qua Abr 28, 2010 13:00

jmario

a) Note que, no ponto P(1,1) a função não existe

b) A função y = x³ aproxima-se bastante, pela esquerda, do ponto P.

c) A função y = x aproxima-se bastante, pela direita, do ponto P.

d) Isto significa, que, no limite x ---> 1 ambas as funções se aproximam bastante do ponto P.

e) Vamos derivar ambas as funções:

y = x ---> y' = 1 ----> Coeficiente angular da reta tangente à função = 1

y = x³ ---> y' = 3x² ----> Coeficiente angular da reta tangente à função = 3x² ----> Para x = 1 ----> y' = 3

Note que, no limite x ---> 1 a função teria DUAS derivadas diferentes.

Provamos que, mesmo que a função existisse no ponto P, ela seria descontínua neste ponto (a função teria um "bico" neste ponto).

Logo, a função NÃO é derivável neste ponto.

Para ser derívável, ela deveria existir e ter derivada ÚNICA neste ponto.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.