por ricardotdai » Seg Abr 19, 2010 03:24
Alguém sabe me explicar o conceito e como fazer passo a passo?
não conseguih entender nada ¬¬
Abraços!
-
ricardotdai
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Abr 19, 2010 03:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
por MarceloFantini » Seg Abr 19, 2010 19:51
Ricardo, por favor nos diga sobre o que você está falando, com um exemplo de preferência, caso contrário não sabemos como ajudá-lo.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por ricardotdai » Ter Abr 20, 2010 01:25
Axo q estamos nos tópicos sobre matrizes e determinantes, não?
mas enfim...
eu ainda não sei pra q serve e Forma Escada Reduzida por Linhas (FERL), mas sei q uma matriz fica mais ou menos assim:
I 1 0 0 0 I
I 0 1 0 0 I
I 0 0 1 0 I
I 0 0 0 1 I
Qualquer matriz, utilizando a FERL, pode ficar desse jeito q eu colokei aí, ou mais ou menos parecido.
O problema eh q eu não conseguih entender como eh o procedimento.
Se alguém souber me explicar eu agradeço ;D
Abraços!
-
ricardotdai
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Abr 19, 2010 03:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Nao consigo achar a forma reduzida da matriz..
por PeIdInHu » Seg Jun 14, 2010 23:07
- 1 Respostas
- 2482 Exibições
- Última mensagem por PeIdInHu

Seg Jun 14, 2010 23:55
Matrizes e Determinantes
-
- Volume da Escada
por Joana Gabriela » Seg Ago 02, 2010 15:14
- 1 Respostas
- 4301 Exibições
- Última mensagem por MarceloFantini

Seg Ago 09, 2010 06:29
Geometria Espacial
-
- Desafio da Escada Rolante
por Molina » Qui Abr 23, 2009 01:24
- 5 Respostas
- 3024 Exibições
- Última mensagem por ginrj

Dom Jun 07, 2009 14:54
Desafios Médios
-
- Teorema das linhas
por valleska » Seg Mai 18, 2009 21:46
- 1 Respostas
- 3144 Exibições
- Última mensagem por Guill

Dom Jul 10, 2011 11:20
Desafios Enviados
-
- Quantidade de números de linhas
por leticiapires52 » Qui Mai 29, 2014 12:41
- 2 Respostas
- 3632 Exibições
- Última mensagem por leticiapires52

Sex Mai 30, 2014 10:46
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.