• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Essa não consegui !!!!!

Essa não consegui !!!!!

Mensagempor geriane » Ter Abr 06, 2010 00:20

Em uma cabine de um estádio de futebol, um computador registra todos os lances de uma partida. Em um desses lances, Zaqueu cobrou uma falta, fazendo a bola descrever um arco de parábola contido num plano vertical, parábola esta simétrica ao seu eixo, o qual também era vertical. A bola caiu no chão exatamente a 30m de Zaqueu. Durante o trajeto, a bola passou raspando a cabeça do juiz. O juiz, que não interferiu na trajetória da bola, tinha 1,76m de altura e estava ereto, a 8m de distância de onde saiu o chute. Desse modo, a altura máxima, em metros, atingida pela bola foi de:
a) 2,25m b) 4,13m c) 6,37m d) 9,21m e) 15,92m
geriane
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Sáb Abr 03, 2010 10:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura
Andamento: formado

Re: Essa não consegui !!!!!

Mensagempor Molina » Ter Abr 06, 2010 19:40

geriane escreveu:Em uma cabine de um estádio de futebol, um computador registra todos os lances de uma partida. Em um desses lances, Zaqueu cobrou uma falta, fazendo a bola descrever um arco de parábola contido num plano vertical, parábola esta simétrica ao seu eixo, o qual também era vertical. A bola caiu no chão exatamente a 30m de Zaqueu. Durante o trajeto, a bola passou raspando a cabeça do juiz. O juiz, que não interferiu na trajetória da bola, tinha 1,76m de altura e estava ereto, a 8m de distância de onde saiu o chute. Desse modo, a altura máxima, em metros, atingida pela bola foi de:
a) 2,25m b) 4,13m c) 6,37m d) 9,21m e) 15,92m

Boa tarde.

Primeiramente desenhe uma parábola onde as raízes (que cortam o eixo x) serão 0 e 30, pois é de onde a bola parte e onde ela chega. Essa parábola será côncava para baixo, já que é assim que a bola percorre sua trajetória e tem essa cara: f(x)=ax^2+bx+c.

Temos então que quando x=0, y=0.

f(0)=a0^2+b0+c
0=c

Então a função terá essa cara: f(x)=ax^2+bx

Agora vamos usar a informação dos pontos que temos. Quando x=30, y=0.

f(30)=a30^2+b30+c
0=900a+30b
b=-30a (equação 1)

Outra informação do gráfico que temos é a posição do juiz. Quando x=8, y=1,76.

f(8)=a8^2+b8
1,76=64a+8b (equação 2)

Substituindo a equação 1 na equação 2 você encontrará a=-0,01.
(o que garante a concavidade para baixo).

Com o valor de a você substitui na equação 1 e encontra b=0,3

Ou seja, a equação tem essa cara: f(x)=-0,01x^2+0,3x

Como ele quer saber a altura máxima e a equação é simétrica, basta calcular y no ponto de x=15 (já que é a metade de 30).

Calculando o f(15) chegamos em y=2,25, que é a altura máxima.

Qualquer dúvida, informe! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}