por estudandoMat » Sex Abr 02, 2010 12:38
Olá, estou com problemas em relação a angulos formados em relogios.
1- Após às 13h, a primeira vez que os ponteiros das
horas e dos minutos formarão um ângulo de 36º será às ?
Resposta: 1h e 12 min
Bom, eu sei que o ponteiro dos minutos começa no 12h (ou 0) e o ponteiro das horas começa no 1. E que quando o ponteiro dos minutos anda, o das horas anda tb. Esse conceito eu já entendo, oque eu não consigo é calcular de maneira eficiente e rápida. Gostaria de saber uma maneira eficiente de calcular esse tipo de problema. Obrigado
-
estudandoMat
- Usuário Parceiro

-
- Mensagens: 52
- Registrado em: Sex Abr 02, 2010 00:29
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Molina » Sex Abr 02, 2010 14:08
estudandoMat escreveu:Olá, estou com problemas em relação a angulos formados em relogios.
1- Após às 13h, a primeira vez que os ponteiros das
horas e dos minutos formarão um ângulo de 36º será às ?
Resposta: 1h e 12 min
Bom, eu sei que o ponteiro dos minutos começa no 12h (ou 0) e o ponteiro das horas começa no 1. E que quando o ponteiro dos minutos anda, o das horas anda tb. Esse conceito eu já entendo, oque eu não consigo é calcular de maneira eficiente e rápida. Gostaria de saber uma maneira eficiente de calcular esse tipo de problema. Obrigado
Boa tarde.
Problemas com horas são bem fáceis de resolver usando a seguinte fórmula:

Onde

é o menor ângulo formado pelos ponteiros, H é o valor das horas (de 0 à 11), e m os minutos (de 0 a 59).
Na nossa condição,

,

e

é o que queremos descobrir:

Resolva isso e encontre o valor de m, que será 12.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por estudandoMat » Sex Abr 02, 2010 14:49
Valeu pela fórmula, Molina !!
-
estudandoMat
- Usuário Parceiro

-
- Mensagens: 52
- Registrado em: Sex Abr 02, 2010 00:29
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Relógio
por DanielFerreira » Qui Jul 30, 2009 17:46
- 1 Respostas
- 2555 Exibições
- Última mensagem por Felipe Schucman

Qui Jul 30, 2009 18:09
Trigonometria
-
- Relógio
por DanielFerreira » Qui Jul 30, 2009 17:50
- 2 Respostas
- 3949 Exibições
- Última mensagem por Elcioschin

Sáb Ago 01, 2009 13:02
Desafios Médios
-
- Desafio do relógio
por ericomoura » Ter Nov 17, 2009 12:03
- 9 Respostas
- 7940 Exibições
- Última mensagem por Dan

Qui Fev 10, 2011 12:21
Desafios Difíceis
-
- Ponteiro de relógio
por Rafael16 » Seg Mai 27, 2013 22:07
- 1 Respostas
- 2298 Exibições
- Última mensagem por Molina

Ter Mai 28, 2013 19:59
Trigonometria
-
- Ângulos no Relógio
por miguel135 » Sex Mar 28, 2014 17:02
- 11 Respostas
- 9675 Exibições
- Última mensagem por Isis

Qua Abr 30, 2014 12:02
Lógica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.