• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Produto notável

Produto notável

Mensagempor matmatco » Ter Nov 19, 2024 07:39

Seja x ∈ C não nulo tal que \left(x + \frac{1}{x} \right)^2= 3 . Determine o valor da expressão {x}^{64}- {x}^{54}+{x}^{44}.

Notei que {x}^{64}- {x}^{54}+{x}^{44}
={({x}^{6})}^{10}{x}^{4}-{({x}^{6})}^{9}+{({x}^{6})}^{7}{x}^{2}.


Fiz o seguinte desenvolvimento:
\left(x + \frac{1}{x} \right)^2 
\Rightarrow {x}^{2} + \frac{1}{{x}^{2}} = 1
\Rightarrow {x}^{4}- {x}^{2} + 1 =0

Então fiz uma substituição de variável, y = {x}^{2}, porém não possui raiz real e não consegui resolver. Depois pensei em continuar o desenvolvimento abaixo e encontrar o valor de {x}^{6}

\left(x + \frac{1}{x} \right)^2 
\Rightarrow {x}^{2} + \frac{1}{{x}^{2}} = 1
\Rightarrow {\left({x}^{2} + \frac{1}{{x}^{2}}\right)}^{3} = {1}^{3}
\Rightarrow {x}^{6}+ \frac{1}{{x}^{6}} = -2

A partir daqui não consegui resolver
Editado pela última vez por matmatco em Qua Nov 20, 2024 23:14, em um total de 1 vez.
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: Produto notável

Mensagempor DanielFerreira » Qua Nov 20, 2024 22:32

Olá matmatco, meus cumprimentos!

Essa primeira parte do enunciado tá completa?

\mathtt{\left ( x + \frac{1}{x} \right )^2}

No desenvolvimento que você fez, considerou igual a três...
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Produto notável

Mensagempor matmatco » Qua Nov 20, 2024 23:12

Olá Daniel, tudo bem?

Exato, não percebi que o erro de digitação.
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: Produto notável

Mensagempor DanielFerreira » Seg Dez 16, 2024 20:30

Olá matmatco, desculpe a demora! As atividades docentes do dia a dia têm me deixado bem ocupado...!

Em relação à questão, eu tentei resolvê-la da primeira vez utilizando alguns artifícios da fatoração. Mas, não consegui finalizar. Na sequência, pensei em seguir de onde vc havia parado; só que não consegui visualizar... Depois, pensei numa saída muito trabalhosa - que era determinar o valor de "x" e depois substituir na expressão \matttt{x^{64} - x^{54} + x^{44}}, afinal como \mathtt{x \in \mathbb{C}} depois era só aplicar a primeira fórmula de Moivre.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Produto notável

Mensagempor DanielFerreira » Seg Dez 16, 2024 20:41

matmatco escreveu:Seja x ∈ C não nulo tal que \left(x + \frac{1}{x} \right)^2= 3 . Determine o valor da expressão {x}^{64}- {x}^{54}+{x}^{44}.

Notei que {x}^{64}- {x}^{54}+{x}^{44}
={({x}^{6})}^{10}{x}^{4}-{({x}^{6})}^{9}+{({x}^{6})}^{7}{x}^{2}.


Fiz o seguinte desenvolvimento:
\left(x + \frac{1}{x} \right)^2 
\Rightarrow {x}^{2} + \frac{1}{{x}^{2}} = 1
\Rightarrow {x}^{4}- {x}^{2} + 1 =0

Então fiz uma substituição de variável, y = {x}^{2}, porém não possui raiz real e não consegui resolver. Depois pensei em continuar o desenvolvimento abaixo e encontrar o valor de {x}^{6}

\left(x + \frac{1}{x} \right)^2 
\Rightarrow {x}^{2} + \frac{1}{{x}^{2}} = 1
\Rightarrow {\left({x}^{2} + \frac{1}{{x}^{2}}\right)}^{3} = {1}^{3}
\Rightarrow {x}^{6}+ \frac{1}{{x}^{6}} = -2

A partir daqui não consegui resolver


\\ \mathtt{x^6 + \dfrac{1}{x^6} = - 2} \\\\ \mathtt{x^{12} + 1 = - 2x^{6}} \\\\ \mathtt{x^{12} + 2x^6 + 1 = 0} \\\\ \mathtt{(x^6 + 1)^2 = 0} \\\\ \boxed{\mathtt{x^6 = - 1}}

Por fim, basta vc substituir...

matmatco escreveu:Notei que {x}^{64}- {x}^{54}+{x}^{44}
={({x}^{6})}^{10}{x}^{4}-{({x}^{6})}^{9}+{({x}^{6})}^{7}{x}^{2}.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Produto notável

Mensagempor DanielFerreira » Seg Dez 16, 2024 20:44

matmatco escreveu:Seja x ∈ C não nulo tal que \left(x + \frac{1}{x} \right)^2= 3 . Determine o valor da expressão {x}^{64}- {x}^{54}+{x}^{44}.

Notei que {x}^{64}- {x}^{54}+{x}^{44}
={({x}^{6})}^{10}{x}^{4}-{({x}^{6})}^{9}+{({x}^{6})}^{7}{x}^{2}.


Fiz o seguinte desenvolvimento:
\left(x + \frac{1}{x} \right)^2 
\Rightarrow {x}^{2} + \frac{1}{{x}^{2}} = 1
\Rightarrow {x}^{4}- {x}^{2} + 1 =0

Então fiz uma substituição de variável, y = {x}^{2}, porém não possui raiz real e não consegui resolver. Depois pensei em continuar o desenvolvimento abaixo e encontrar o valor de {x}^{6}

\left(x + \frac{1}{x} \right)^2 
\Rightarrow {x}^{2} + \frac{1}{{x}^{2}} = 1
\Rightarrow {\left({x}^{2} + \frac{1}{{x}^{2}}\right)}^{3} = {1}^{3}
\Rightarrow {x}^{6}+ \frac{1}{{x}^{6}} = -2

A partir daqui não consegui resolver


\\ \mathtt{x^6 + \dfrac{1}{x^6} = - 2} \\\\ \mathtt{x^{12} + 1 = - 2x^{6}} \\\\ \mathtt{x^{12} + 2x^6 + 1 = 0} \\\\ \mathtt{(x^6 + 1)^2 = 0} \\\\ \boxed{\mathtt{x^6 = - 1}}

Por fim, basta vc substituir...

matmatco escreveu:Notei que {x}^{64}- {x}^{54}+{x}^{44}
=\boxed{{({x}^{6})}^{10}{x}^{4}-{({x}^{6})}^{9}+{({x}^{6})}^{7}{x}^{2}}.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59