por adauto martins » Sex Abr 09, 2021 17:16
(ITA-1955)sena=3/5 e cosb=4/7.calcular tang(a+b),sabendo-se que os arcos estao no primeiro quadrante.
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Sex Abr 09, 2021 17:52
soluçao

foi dado que sena=3/5,vamos encontrar cosa
![{sena}^{2}+cosa^2=1\Rightarrow cosa=\sqrt[]{1-sena^2} {sena}^{2}+cosa^2=1\Rightarrow cosa=\sqrt[]{1-sena^2}](/latexrender/pictures/623221b1da2757cdf4e5b4f4bfe6852d.png)
como os arcos estao no primeiro quadrante,sao positivos,logo
![cosa=\sqrt[]{1-(3/5)^2}=\sqrt[]{16/25}=4/5 cosa=\sqrt[]{1-(3/5)^2}=\sqrt[]{16/25}=4/5](/latexrender/pictures/3ac3fc7b9e5b3fecc329be2c4087f3b4.png)
foi dado que cos b=4/7,vamos encontrar senb
![senb=\sqrt[]{1-(4/7)^2}=\sqrt[]{33/49}=\sqrt[]{33}/7 senb=\sqrt[]{1-(4/7)^2}=\sqrt[]{33/49}=\sqrt[]{33}/7](/latexrender/pictures/6fb31266a22e8524bc93b248483634ff.png)
logo
![tg(a+b)=(tga+tgb)/(1-tga.tgb)=((sena/cosa))+(senb/cosb))/(1-(sena/cosa).(senb/cosb))=((3/5)/(4/5))+((\sqrt[]{33}/7)/(4/7))/(1-((3/5)/(4/5).(\sqrt[]{33}/7)/(4/7))= tg(a+b)=(tga+tgb)/(1-tga.tgb)=((sena/cosa))+(senb/cosb))/(1-(sena/cosa).(senb/cosb))=((3/5)/(4/5))+((\sqrt[]{33}/7)/(4/7))/(1-((3/5)/(4/5).(\sqrt[]{33}/7)/(4/7))=](/latexrender/pictures/bc846201ea3a481466e4735ba6075e4e.png)
![((3/5)/(4/5))+((\sqrt[]{33}/7)/(4/7))/(1-((3/5)/(4/5).(\sqrt[]{33}/7)/(4/7)) ((3/5)/(4/5))+((\sqrt[]{33}/7)/(4/7))/(1-((3/5)/(4/5).(\sqrt[]{33}/7)/(4/7))](/latexrender/pictures/ef6ac7cf5fd971e4b0992b3bce85ee3b.png)
![=((3/4)+(\sqrt[]{33}/7)/(1-(3.(\sqrt[]{33}))=(84+\sqrt[]{33})/(28.(1-3.\sqrt[]{33})) =((3/4)+(\sqrt[]{33}/7)/(1-(3.(\sqrt[]{33}))=(84+\sqrt[]{33})/(28.(1-3.\sqrt[]{33}))](/latexrender/pictures/f27065bcab70212b5524ea91ef88136e.png)
creio que as contas estao certas,costumo errar,mas o racicio é esse...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Sáb Abr 10, 2021 16:40
correçao
refiz as contas é encontrei
![4.(3+\sqrt[]{33})/(16-3.\sqrt[]{33}) 4.(3+\sqrt[]{33})/(16-3.\sqrt[]{33})](/latexrender/pictures/f31f62a88949a9637f0b08daf253fc83.png)
crei estar correta...obrigado
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- exercicio resolvido
por adauto martins » Sex Jul 15, 2016 14:48
- 0 Respostas
- 33693 Exibições
- Última mensagem por adauto martins

Sex Jul 15, 2016 14:48
Teoria dos Números
-
- exercicio resolvido
por adauto martins » Qua Jul 20, 2016 18:35
- 0 Respostas
- 31780 Exibições
- Última mensagem por adauto martins

Qua Jul 20, 2016 18:35
Cálculo: Limites, Derivadas e Integrais
-
- exercicio resolvido
por adauto martins » Ter Jul 26, 2016 17:43
- 0 Respostas
- 22011 Exibições
- Última mensagem por adauto martins

Ter Jul 26, 2016 17:43
Cálculo: Limites, Derivadas e Integrais
-
- exercicio resolvido
por adauto martins » Sáb Ago 13, 2016 11:28
- 0 Respostas
- 17064 Exibições
- Última mensagem por adauto martins

Sáb Ago 13, 2016 11:28
Teoria dos Números
-
- exercicio resolvido
por adauto martins » Sex Out 18, 2019 14:29
- 2 Respostas
- 22847 Exibições
- Última mensagem por adauto martins

Sex Out 18, 2019 15:42
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.