uma algebra é definida por (S,+),onde S é um conjunto e "+" o operador soma dos elementos de S.
mostre que:
a)existe o operador multiplicativo " * ".
b)existe o elemento neutro da soma,e o elemento unidade do operador multiplicativo.
c)existe o elemento simetrico da soma e o elemento neutro multiplicativo.

,entao pela definiçao da algebra,teremos:


,logo
,contado "e" vezes,e
,logo
(faça-o como exercicio)




![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)