por lucasabreuo » Seg Mai 06, 2019 11:52
[Problemas de Otimização]
Prezados, bom dia!
Tenho o seguinte enunciado para resolver.
A soma de dois números positivos é 16. Qual é o menor valor possível para a soma de seus quadrados?
Resolvi assim:
x + y = 16 -> y = 16 - x
S =

Logo:

Derivando:
2x - 2 (16 - x)
2x - 32 + 2x
4x - 32
Igualando a 0:
4x - 32 = 0
4x = 32
x = 8
Logo:
x = 8;
x + y = 16
8 + y = 16
y = 8;
Assim:
S =

S =

S = 128 (Resposta final)
A minha dúvida é se a resposta está correta, uma vez que o problema fala em minimizar a soma dos quadrados dos números e não estou certo se fiz corretamente.
Agradeço desde já!
-
lucasabreuo
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Dom Mai 05, 2019 23:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Sistemas de Informação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Ajuda com problemas de otimização
por sergioluizom » Ter Abr 17, 2012 16:15
- 1 Respostas
- 9065 Exibições
- Última mensagem por LuizAquino

Sex Abr 20, 2012 19:10
Cálculo: Limites, Derivadas e Integrais
-
- Aplicações de Derivada - Problemas de Otimização - Socorro!!
por Josi » Ter Nov 03, 2009 17:30
- 1 Respostas
- 2702 Exibições
- Última mensagem por marciommuniz

Ter Nov 03, 2009 22:30
Cálculo: Limites, Derivadas e Integrais
-
- Aplicações de Derivada - Problemas de Otimização - Socorro!!
por Josi » Ter Nov 03, 2009 17:31
- 1 Respostas
- 4667 Exibições
- Última mensagem por Elcioschin

Qua Nov 04, 2009 08:40
Cálculo: Limites, Derivadas e Integrais
-
- Otimizacao
por Taisa » Sex Nov 12, 2010 13:53
- 1 Respostas
- 1991 Exibições
- Última mensagem por MarceloFantini

Sex Nov 12, 2010 14:36
Cálculo: Limites, Derivadas e Integrais
-
- Otimização
por AlbertoAM » Sáb Mai 14, 2011 21:36
- 4 Respostas
- 2283 Exibições
- Última mensagem por AlbertoAM

Dom Mai 15, 2011 19:23
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.