por brumadense » Sex Mar 19, 2010 03:16
Olá colegas
Gostaria de uma explicação de como essa função foi resolvida. Estou sentindo dificuldade em resolver funções quando aparecem com radicais. Alguém poderia me explicar como resolver quando aparece radicais, como no caso abaixo? Desde já agradeço.
Seja a função

)

R dado por f

=

. Calcule:
![f \left(\sqrt[2]{2}-1 \right)=\frac{{\left(\sqrt[2]{2}-1 \right)}^{2}-\left(\sqrt[2]{2}-1 \right)+1}{\sqrt[2]{2}-1+1}=\frac{2-2\sqrt[2]{2}+1-\sqrt[2]{2}+1+1}{\sqrt[2]{2}}=\frac{5-3\sqrt[2]{2}}{\sqrt[2]{2}}=\frac{5\sqrt[2]{2}-3\sqrt[2]{2}.\sqrt[2]{2}}{\sqrt[2]{2}.\sqrt[2]{2}}=\frac{5\sqrt[2]{2}-6}{2} f \left(\sqrt[2]{2}-1 \right)=\frac{{\left(\sqrt[2]{2}-1 \right)}^{2}-\left(\sqrt[2]{2}-1 \right)+1}{\sqrt[2]{2}-1+1}=\frac{2-2\sqrt[2]{2}+1-\sqrt[2]{2}+1+1}{\sqrt[2]{2}}=\frac{5-3\sqrt[2]{2}}{\sqrt[2]{2}}=\frac{5\sqrt[2]{2}-3\sqrt[2]{2}.\sqrt[2]{2}}{\sqrt[2]{2}.\sqrt[2]{2}}=\frac{5\sqrt[2]{2}-6}{2}](/latexrender/pictures/02315716053abca173ab996ed26fafef.png)
-
brumadense
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sex Jan 15, 2010 00:06
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Molina » Sex Mar 19, 2010 09:17
brumadense escreveu:Olá colegas
Gostaria de uma explicação de como essa função foi resolvida. Estou sentindo dificuldade em resolver funções quando aparecem com radicais. Alguém poderia me explicar como resolver quando aparece radicais, como no caso abaixo? Desde já agradeço.
Seja a função

)

R dado por f

=

. Calcule:
![f \left(\sqrt[2]{2}-1 \right)=\frac{{\left(\sqrt[2]{2}-1 \right)}^{2}-\left(\sqrt[2]{2}-1 \right)+1}{\sqrt[2]{2}-1+1}=\frac{2-2\sqrt[2]{2}+1-\sqrt[2]{2}+1+1}{\sqrt[2]{2}}=\frac{5-3\sqrt[2]{2}}{\sqrt[2]{2}}=\frac{5\sqrt[2]{2}-3\sqrt[2]{2}.\sqrt[2]{2}}{\sqrt[2]{2}.\sqrt[2]{2}}=\frac{5\sqrt[2]{2}-6}{2} f \left(\sqrt[2]{2}-1 \right)=\frac{{\left(\sqrt[2]{2}-1 \right)}^{2}-\left(\sqrt[2]{2}-1 \right)+1}{\sqrt[2]{2}-1+1}=\frac{2-2\sqrt[2]{2}+1-\sqrt[2]{2}+1+1}{\sqrt[2]{2}}=\frac{5-3\sqrt[2]{2}}{\sqrt[2]{2}}=\frac{5\sqrt[2]{2}-3\sqrt[2]{2}.\sqrt[2]{2}}{\sqrt[2]{2}.\sqrt[2]{2}}=\frac{5\sqrt[2]{2}-6}{2}](/latexrender/pictures/02315716053abca173ab996ed26fafef.png)
Bom dia.
Dada esta função

=

queremos encontrar
![f \left(\sqrt[2]{2}-1 \right) f \left(\sqrt[2]{2}-1 \right)](/latexrender/pictures/90d35ea6766006e5e36ab952c432473a.png)
, ou seja, vamos substituir todos os x da equação por
![\sqrt[2]{2}-1 \sqrt[2]{2}-1](/latexrender/pictures/f04f8b4ee7780eec1f1bd142c7b476fd.png)
. E foi isso que foi feito.
Os procedimentos seguintes foi só algebrismo. Elevar ao quadrado, somar, subtrair, etc. Porém, o denominador da fração (parte de baixo) ficou com raiz. Quando isso acontece temos que racionalizar esta fração, ou seja, eliminar essa raiz de baixo. Para fazer isso o truque é sempre o mesmo: multiplicar pela própria raiz. Só que temos que multiplicar em cima e embaixo. E foi isso que foi feito, multiplicando por

.
Qualquer dúvida, avise!

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Preciso de uma explicação
por Deko » Dom Mar 28, 2010 16:33
- 1 Respostas
- 1620 Exibições
- Última mensagem por Elcioschin

Dom Mar 28, 2010 19:07
Cálculo: Limites, Derivadas e Integrais
-
- explicação calculo
por crsglc2 » Dom Abr 04, 2010 23:21
- 1 Respostas
- 2565 Exibições
- Última mensagem por Molina

Ter Abr 06, 2010 21:58
Cálculo: Limites, Derivadas e Integrais
-
- Preciso de Explicação
por andersonvendramin28 » Ter Mai 31, 2011 11:29
- 8 Respostas
- 8063 Exibições
- Última mensagem por andersonvendramin28

Qua Jun 08, 2011 15:46
Funções
-
- Explicação da tangente
por Cleyson007 » Qua Out 17, 2012 16:48
- 3 Respostas
- 3771 Exibições
- Última mensagem por Cleyson007

Qui Out 18, 2012 09:14
Trigonometria
-
- DUVIDA- EXPLICAÇÃO
por zenildo » Qui Dez 19, 2013 12:01
- 0 Respostas
- 1025 Exibições
- Última mensagem por zenildo

Qui Dez 19, 2013 12:01
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.