por Therodrigou » Qua Jun 20, 2018 06:46
Olá! o que deve fazer, na expressão a seguir, para que ela seja igual a -32
[(2-x)^4-16]/x
quando X tende a 0
Obrigado pela atenção!
-
Therodrigou
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qua Jun 20, 2018 06:42
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia mecânica
- Andamento: cursando
por Gebe » Qua Jun 20, 2018 18:35
Ja que substituindo o 0 (zero) na expressão obtemos uma indeterminação 0/0, podemos utilizar a regra de l'Hopital.
Assim o LIMITE da expressão é igual ao da expressão com o numerador e o denominador derivados, ou seja:

Resolvendo então temos:

Espero ter ajudado, se ficar alguma duvida na resolução mande msg.
-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por Therodrigou » Qua Jun 20, 2018 22:54
vlw!
-
Therodrigou
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qua Jun 20, 2018 06:42
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia mecânica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] limite trigonométrico quando x tende ao infinito
por Ge_dutra » Seg Jan 28, 2013 10:13
- 2 Respostas
- 7027 Exibições
- Última mensagem por Ge_dutra

Ter Jan 29, 2013 14:20
Cálculo: Limites, Derivadas e Integrais
-
- Provar lim f(x)g(x) =0 quando o x tende a p
por Danilct » Seg Dez 07, 2015 22:00
- 0 Respostas
- 2145 Exibições
- Última mensagem por Danilct

Seg Dez 07, 2015 22:00
Cálculo: Limites, Derivadas e Integrais
-
- [Matemática Básica] Qual o valor de -X² quando x vale...
por Nando26 » Sex Jun 04, 2021 12:53
- 3 Respostas
- 10313 Exibições
- Última mensagem por DanielFerreira

Ter Jun 22, 2021 16:32
Equações
-
- [LIMITE] Limite que tende ao infinito
por Mell » Qua Mai 08, 2013 00:09
- 3 Respostas
- 2458 Exibições
- Última mensagem por e8group

Qua Mai 08, 2013 21:21
Cálculo: Limites, Derivadas e Integrais
-
- Quando saber que não existe um limite ?
por OtavioBonassi » Qua Jan 05, 2011 15:14
- 6 Respostas
- 52321 Exibições
- Última mensagem por OtavioBonassi

Qua Jan 05, 2011 19:48
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.