por adauto martins » Seg Mai 28, 2018 18:49
seja a equaçao diofantina:

,mostre que a é impar.
soluçao:
para q. a equaçao tenha soluçao teremos q. ter:

,ou seja:
primos dois a dois...logo,nao poderemos ter ambos

pares.
e nem ambos impares,pois:se forem pares mdc(x,y) sera multiplo de 2 e refuta a condiçao de soluçao.se forem impares teriamos:

,q ´um numero par,e portanto divisivel por 2,o q. refuta a condiçao(mdc(x,y)=1) de termos soluçoes inteiras p. a equaçao diofantina dada.portanto a ,somente podera ser impar.
ou entao,

tem q. ser um par,outro impar.entao:
suporemos x,impar e y,par,logo:

raciocinio analogo p/

-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Seg Jun 04, 2018 19:54
para ficar mais clara a condiçao de q. o par(x,y) nao poderem ser ambos impares,
usarei a ALGEBRA MODULAR.
todo impar quadradro é escrito como

,x impar.
prova:
seja x um impar,logo:

,ou seja:

,entao:

q. contradiz a condiçao exposta acima...
obs:

é tbem um impar quadrado,ou seja:


...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Fundamento da Matemática] Equaçõesw Diofantinas
por andrecalegarif » Ter Jul 25, 2017 00:54
- 1 Respostas
- 1976 Exibições
- Última mensagem por adauto martins

Sáb Jul 29, 2017 16:37
Aritmética
-
- [P.A.] Exercício
por Cleyson007 » Dom Mai 25, 2008 13:02
- 1 Respostas
- 6463 Exibições
- Última mensagem por admin

Dom Mai 25, 2008 13:20
Progressões
-
- Exercício de PA
por Cleyson007 » Dom Jun 01, 2008 02:45
- 1 Respostas
- 11243 Exibições
- Última mensagem por admin

Dom Jun 01, 2008 14:31
Progressões
-
- Exercício de PA e PG
por Cleyson007 » Sáb Jun 14, 2008 01:21
- 3 Respostas
- 15152 Exibições
- Última mensagem por DanielFerreira

Sex Jul 24, 2009 11:59
Progressões
-
- exercicio de P.G.
por Gir » Qui Jul 02, 2009 18:21
- 3 Respostas
- 4288 Exibições
- Última mensagem por Gir

Sex Jul 03, 2009 10:12
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.