• Anúncio Global
    Respostas
    Exibições
    Última mensagem

resultados não batem URGENTE

resultados não batem URGENTE

Mensagempor liviatoniolo222 » Dom Mai 06, 2018 22:58

Eu fiz essa questões de todas as maneiras possíveis e só consegui chegar ao resultado de 968690,9401242 porém a resposta correta é 968,690.
O que eu estou fazendo de errado?



1/ 6,28 x 0,8 x10^3 x 205,478 x10^-12
liviatoniolo222
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Mai 06, 2018 22:54
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: eletromecanica
Andamento: cursando

Re: resultados não batem

Mensagempor Gebe » Dom Mai 06, 2018 23:16

Primeiramente a forma como tu colocou a expressão está confusa.
Dessa forma como está escrito é equivalente a: \frac{1}{6,28} * 0,8 *10^3 * 205,478 *10^{-12}

Porem pelo resultado deve ser: \frac{1}{6,28 * 0,8 *10^3 * 205,478 *10^{-12}}

Sendo assim, realmente a tua conta está certa. Para bater com o gabarito falta um 1000 multiplicando no denominador, logo ou o gabarito está errado mesmo ou (uma possibilidade) o exercicio esta utilizando a virgula do 205,478 em outra notação, ou seja, é na verdade 205478 ou ainda o gabarito está apresentado neste tipo de notação (virgula separando os milhares das centenas).
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 139
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: resultados não batem

Mensagempor liviatoniolo222 » Dom Mai 06, 2018 23:38

Gebe escreveu:Primeiramente a forma como tu colocou a expressão está confusa.
Dessa forma como está escrito é equivalente a: \frac{1}{6,28} * 0,8 *10^3 * 205,478 *10^{-12}

Porem pelo resultado deve ser: \frac{1}{6,28 * 0,8 *10^3 * 205,478 *10^{-12}}

Sendo assim, realmente a tua conta está certa. Para bater com o gabarito falta um 1000 multiplicando no denominador, logo ou o gabarito está errado mesmo ou (uma possibilidade) o exercicio esta utilizando a virgula do 205,478 em outra notação, ou seja, é na verdade 205478 ou ainda o gabarito está apresentado neste tipo de notação (virgula separando os milhares das centenas).
Anexos
ED1EB6DC-5333-476E-95A1-C84C1127330B.jpeg
Segue em em anexo à questão. Usando 205478 eu consigo chegar ao resultado de 968,960
liviatoniolo222
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Mai 06, 2018 22:54
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: eletromecanica
Andamento: cursando

Re: resultados não batem

Mensagempor liviatoniolo222 » Dom Mai 06, 2018 23:45

Gebe escreveu:Primeiramente a forma como tu colocou a expressão está confusa.
Dessa forma como está escrito é equivalente a: \frac{1}{6,28} * 0,8 *10^3 * 205,478 *10^{-12}

Porem pelo resultado deve ser: \frac{1}{6,28 * 0,8 *10^3 * 205,478 *10^{-12}}

Sendo assim, realmente a tua conta está certa. Para bater com o gabarito falta um 1000 multiplicando no denominador, logo ou o gabarito está errado mesmo ou (uma possibilidade) o exercicio esta utilizando a virgula do 205,478 em outra notação, ou seja, é na verdade 205478 ou ainda o gabarito está apresentado neste tipo de notação (virgula separando os milhares das centenas).


Então, acabei de perceber que no circuito eu tenho 205.478 mas na solução está 205,478. Talvez por isso a confusão de valores.
liviatoniolo222
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Mai 06, 2018 22:54
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: eletromecanica
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}