por thejotta » Seg Abr 30, 2018 16:52
A área de A ? B, onde
A={ (x,y) ?R2:0 ? x ? ?/2, 0 ? y ? c o s x }
B={ (x, y) ?R2: 0 < x < ?/2, sin x ? y ? 1}
é igual a:
a)(?2 - 1) /2
b)?2 /2
c)?2 - 1
d)1
e)?2
Não estou conseguindo resolver essa questão, alguém pode me ajudar?
o que eu fiz: Calculei a área de
A = 1
B = ?/2 -1
Sei que o gabarito é letra C. mas não sei como chegar nesse resultado.
-
thejotta
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Seg Out 29, 2012 12:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por Gebe » Ter Mai 01, 2018 00:03
Sempre que possivel faça o desenho!

- area.png (6.36 KiB) Exibido 11019 vezes
A area destacada é a pedida, portanto precisamos primeiramente achar onde as duas senoides se tocam, ou seja, sen(x) = cos(x).
Neste intervalo a intersecção acontece em pi/4 (ou 45°).
Agora para calcular a area de intersecção podemos calcular a area abaixo do cosseno entre 0 e pi/4 e subtrair a area abaixo do seno entre 0 e pi/4:
![\\
area=\int_{0}^{\frac{pi}{4}}cos(x)dx-\int_{0}^{\frac{pi}{4}}sen(x)dx\\
\\
\\
area=\left[sen\left(\frac{pi}{4} \right)-sen(0) \right]-\left[-cos\left(\frac{pi}{4} \right)-\left( -cos(0) \right) \right]\\
\\
\\
area=\frac{\sqrt{2}}{2}-0+\frac{\sqrt{2}}{2}-1\\
\\
\\
area=\sqrt{2}-1 \\
area=\int_{0}^{\frac{pi}{4}}cos(x)dx-\int_{0}^{\frac{pi}{4}}sen(x)dx\\
\\
\\
area=\left[sen\left(\frac{pi}{4} \right)-sen(0) \right]-\left[-cos\left(\frac{pi}{4} \right)-\left( -cos(0) \right) \right]\\
\\
\\
area=\frac{\sqrt{2}}{2}-0+\frac{\sqrt{2}}{2}-1\\
\\
\\
area=\sqrt{2}-1](/latexrender/pictures/f1048ac44708470246fe670828dd29ee.png)
Espero ter ajudado, bons estudos.
-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por thejotta » Ter Mai 01, 2018 10:05
Muito obrigado. Agora consegui entender, que Deus te abençoe.

-
thejotta
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Seg Out 29, 2012 12:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por Gebe » Ter Mai 01, 2018 22:51
-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [integrais] Calculando áreas - Integrais
por Faby » Seg Set 19, 2011 10:55
- 11 Respostas
- 8462 Exibições
- Última mensagem por LuizAquino

Qua Set 21, 2011 18:03
Cálculo: Limites, Derivadas e Integrais
-
- [Interseção entre planos]
por sulafuly » Dom Mar 02, 2014 01:14
- 0 Respostas
- 1920 Exibições
- Última mensagem por sulafuly

Dom Mar 02, 2014 01:14
Geometria Analítica
-
- Interseção entre planos
por marinasaboia » Sex Jan 08, 2016 14:44
- 1 Respostas
- 3109 Exibições
- Última mensagem por RuuKaasu

Sex Jan 15, 2016 21:52
Geometria Analítica
-
- Determinar a interseção entre os subespaços
por Cicero ferreira » Sex Mar 14, 2014 17:16
- 1 Respostas
- 1595 Exibições
- Última mensagem por Russman

Sex Mar 14, 2014 19:45
Introdução à Álgebra Linear
-
- [Subespaço] Interseção entre subespaços
por ingriddcoutinho » Dom Abr 12, 2015 19:38
- 5 Respostas
- 4502 Exibições
- Última mensagem por adauto martins

Ter Abr 14, 2015 15:51
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.