por 113 » Dom Abr 22, 2018 14:37
URGENTE!!! POR FAVOR ME AJUDEM.
Uma das aplicações particular mencionada é a do sólido em revolução, onde utilizamos a expressão V=??ba(f(y))2 para obter seu volume.
Sua tarefa é determinar o volume total de um espaçador para parafusos, representado a seguir, e estimar quanta matéria prima é desperdiçada na produção de cada peça, pois o volume de material utilizado é um valor proposto considerando as rebarbas da peça, V = 0,52 (u.v.).
Os limites superior e inferior da parede do espaçador são dados pelas funções aproximadas f (x) e g (x) respectivamente.
f(x)=?x2/4+x/5+3/4
g(x)=x2/2?x/10+1/2
a=?1/10
b=2/5
Observações:
(m + n)² = m² + 2mn + n² e (m + n + c)² = [(m + n) + c]² = (m + n)² +2.(m+n).c + c²
- Anexos
-

-
113
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Dom Abr 22, 2018 14:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- CALCULO DE INTEGRAIS
por Jaison Werner » Ter Jan 04, 2011 14:53
- 1 Respostas
- 1413 Exibições
- Última mensagem por Molina

Ter Jan 04, 2011 20:23
Cálculo: Limites, Derivadas e Integrais
-
- CALCULO DE INTEGRAIS
por Jaison Werner » Sex Jan 07, 2011 19:03
- 0 Respostas
- 1216 Exibições
- Última mensagem por Jaison Werner

Sex Jan 07, 2011 19:03
Cálculo: Limites, Derivadas e Integrais
-
- CALCULO DE INTEGRAIS
por Jaison Werner » Sex Jan 07, 2011 19:08
- 0 Respostas
- 1136 Exibições
- Última mensagem por Jaison Werner

Sex Jan 07, 2011 19:08
Cálculo: Limites, Derivadas e Integrais
-
- Calculo Integrais
por neoreload » Sáb Mar 14, 2015 04:28
- 2 Respostas
- 3823 Exibições
- Última mensagem por neoreload

Dom Mar 15, 2015 17:58
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo de áreas por integrais
por Faby » Seg Set 19, 2011 10:50
- 9 Respostas
- 5980 Exibições
- Última mensagem por Faby

Qui Set 22, 2011 00:41
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.