por Flavio Cacequi » Qui Mar 29, 2018 08:22
Se a equação quadrática ax²+bx-b²/a=0, apresenta raízes x1 e x2, determine E=(2ax1+b)^4 + (2ax2+b)^4.
a)50a^4
b)50a^4+2a^2
c)25b^4
d)100b^2
e)50b^4
-
Flavio Cacequi
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Ter Jun 06, 2017 17:48
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Gebe » Qui Mar 29, 2018 19:24
Flavio Cacequi escreveu:Se a equação quadrática ax²+bx-b²/a=0, apresenta raízes x1 e x2, determine E=(2ax1+b)^4 + (2ax2+b)^4.
a)50a^4
b)50a^4+2a^2
c)25b^4
d)100b^2
e)50b^4
Utilizando Bhaskara temos:
![\\
x=\frac{-b\pm\sqrt[2]{(b)^2-4*a*\left(-\frac{b^2}{a} \right)}}{2*a}\\
\\
x=\frac{-b\pm\sqrt[2]{b^2+\left(\frac{4ab^2}{a} \right)}}{2a}\\
\\
x=\frac{-b\pm\sqrt[2]{b^2+\left(4b^2 \right)}}{2a}\\
\\
x=\frac{-b\pm\sqrt[2]{5b^2}}{2a}\\
\\
x=\frac{-b\pm b \sqrt[2]{5}}{2a}\\
\\ \\
x=\frac{-b\pm\sqrt[2]{(b)^2-4*a*\left(-\frac{b^2}{a} \right)}}{2*a}\\
\\
x=\frac{-b\pm\sqrt[2]{b^2+\left(\frac{4ab^2}{a} \right)}}{2a}\\
\\
x=\frac{-b\pm\sqrt[2]{b^2+\left(4b^2 \right)}}{2a}\\
\\
x=\frac{-b\pm\sqrt[2]{5b^2}}{2a}\\
\\
x=\frac{-b\pm b \sqrt[2]{5}}{2a}\\
\\](/latexrender/pictures/d0f933a03c493ed0321e179014d7b787.png)
Portanto x1 e x2 ficam:
![\\
x1=\frac{-b+ b \sqrt[2]{5}}{2a}\\
\\
x2=\frac{-b- b \sqrt[2]{5}}{2a}\\
\\ \\
x1=\frac{-b+ b \sqrt[2]{5}}{2a}\\
\\
x2=\frac{-b- b \sqrt[2]{5}}{2a}\\
\\](/latexrender/pictures/d8ac4923de2a2b47ba7920c73d59e37c.png)
Agora calculando E=(2ax1+b)^4+(2ax2+b)^4 :
![\\
E=\left( 2a*\frac{-b+ b \sqrt[2]{5}}{2a} +b\right)^4+\left( 2a*\frac{-b- b \sqrt[2]{5}}{2a} +b\right)^4\\
\\
\\
E=\left( -b+ b \sqrt[2]{5} +b \right)^4+\left( -b- b \sqrt[2]{5} +b \right)^4\\
\\
E=\left( b \sqrt[2]{5} \right)^4+\left(- b \sqrt[2]{5} \right)^4\\
\\
E=\left(b^4*\left(\sqrt[2]{5} \right)^4 \right)+\left((-b)^4*\left(\sqrt[2]{5} \right)^4 \right)\\
\\
E=\left( b^4*5^2 \right)+\left( b^4*5^2 \right)\\
\\
E=25b^2+25b^2=50b^2 \\
E=\left( 2a*\frac{-b+ b \sqrt[2]{5}}{2a} +b\right)^4+\left( 2a*\frac{-b- b \sqrt[2]{5}}{2a} +b\right)^4\\
\\
\\
E=\left( -b+ b \sqrt[2]{5} +b \right)^4+\left( -b- b \sqrt[2]{5} +b \right)^4\\
\\
E=\left( b \sqrt[2]{5} \right)^4+\left(- b \sqrt[2]{5} \right)^4\\
\\
E=\left(b^4*\left(\sqrt[2]{5} \right)^4 \right)+\left((-b)^4*\left(\sqrt[2]{5} \right)^4 \right)\\
\\
E=\left( b^4*5^2 \right)+\left( b^4*5^2 \right)\\
\\
E=25b^2+25b^2=50b^2](/latexrender/pictures/34fdb5d08cb2cfeca3504c4572d32f42.png)
(letra e)
Se permanecer alguma duvida, mande uma msg. Bons estudos.
-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Equação quadrática]-UFLA-MG
por JU201015 » Dom Nov 18, 2012 21:28
- 8 Respostas
- 5019 Exibições
- Última mensagem por e8group

Qua Nov 21, 2012 06:51
Equações
-
- Equação Diofantina Quadrática
por CJunior » Qui Jun 26, 2014 10:53
- 1 Respostas
- 1548 Exibições
- Última mensagem por Russman

Qui Jun 26, 2014 21:31
Álgebra Elementar
-
- Problema de Função quadrática - equação
por PatriciaFerreira » Qui Abr 23, 2015 19:18
- 1 Respostas
- 1252 Exibições
- Última mensagem por DanielFerreira

Qua Abr 29, 2015 21:22
Funções
-
- Função quadrática
por Ananda » Sex Mar 28, 2008 16:00
- 6 Respostas
- 8982 Exibições
- Última mensagem por admin

Sex Mar 28, 2008 21:25
Funções
-
- Função quadratica
por Aline » Qui Jun 18, 2009 14:22
- 2 Respostas
- 2515 Exibições
- Última mensagem por Cleyson007

Sex Jun 19, 2009 10:00
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.