por Gebe » Qui Mar 15, 2018 00:11
Ola, vou responder abaixo as questões, no entanto aconselho a tomar tempo pra revisa-los e principalmente entende-los, afinal muito provavelmente tu vai ter prova e esse é um assunto simples.
Antes da resolução convém lembrar de como é feito multiplicação de matrizes, de uma matriz por um escalar (numero) e como achar a matriz transposta. Vou fazer isso com exemplos.
Matriz x Matriz: Só é possivel quando o numero de
colunas da primeira é
IGUAL ao numero de
LINHAS da segunda. Fazemos a multiplicação linha (primeira matriz) vezes coluna (segunda matriz).
ex.:
Matriz x escalar: Esta operação é mais simples, precisamos apenas multiplicar o escalar por cada elemento da matriz.
ex.:
Matriz transposta: Aqui só precisamos trocar linha por coluna (o que era linha vira coluna e vice-versa).
ex.:

Com isso, as questões:
1°)
a)

b)

c)

2°)
A) AB =

B) AA =

C) AB+BC =

Refaça os exercicios para conferir se não houve erros, bons estudos.
-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por Luizmatheusbr » Qui Mar 15, 2018 01:39
so nao entendi a matriz x matriz , o resto eu entendi
-
Luizmatheusbr
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qua Mar 14, 2018 22:42
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matematica
- Andamento: cursando
por Gebe » Qui Mar 15, 2018 03:30
Ok, vou tentar deixar mais detalhado. Vamos começar exemplificando melhor a questão da condição para a multiplicação.
Para que duas matrizes possam ser multiplicadas a primeira matriz deve ter o seu numero de colunas igual ao numero de linhas da outra. Vou dar dois exemplos de operações que NÃO podem ser realizadas:
ex1:

NAO pode ,pois a primeira tem 2 colunas e a segunda tem 3 linhas
ex2.:

NAO pode, pois a primeira tem 2 colunas e a segunda tem tres linhas.
Note com isso que a ordem da operação na multiplicação de matrizes é importante. No segundo exemplo se as matrizes tivessem trocado de lugar seria possivel de realizar a multiplicação, pois teriamos a primeira matriz com 3 colunas e a segunda com 3 linhas.
Agora para a multiplicação de fato, vamos considerar duas matrizes genericas uma A e outra B (matrizes abaixo). Perceba que as matrizes tem 4 elementos: a11, a12, a21 e a22 e b11, b12, b21 e b22. Estes indices como mostrado abaixo representam a linha e a coluna do elemento.


Dizemos que a multiplicação é feita linha por coluna, pois os elementos da matriz resultante serão calculados multiplicando a linha da primeira matriz pela coluna da segunda. Como neste caso explicar apenas com palavras fica dificil, vamos fazer o exemplo com essas genericas, sendo M a matriz resultante de AxB e m (minusculo) os elementos de M.
m11, elemento da linha1 e coluna 1 da matriz resultante é calculado pela multiplicação da linha1 da matriz A pela coluna 1 da matriz B, portanto:
m11 = a11*b11 + a12*b21
m12, elemento da linha1 e coluna 2 da matriz resultante é calculado pela multiplicação da linha1 da matriz A pela coluna 2 da matriz B, portanto:
m12 = a11*b12 + a12*b22
m21, elemento da linha2 e coluna 1 da matriz resultante é calculado pela multiplicação da linha2 da matriz A pela coluna 1 da matriz B, portanto:
m21 = a21*b11 + a22*b21
m22, elemento da linha2 e coluna 2 da matriz resultante é calculado pela multiplicação da linha2 da matriz A pela coluna 2 da matriz B, portanto:
m22 = a21*b21 + a22*b22

Outro exemplo com numeros agora e diferentes dimensões:

Por fim vale notar outro ponto interessante, a matriz resultante da multiplicação terá o mesmo numero de linhas da primeira e numero de colunas igual a da segunda.
Espero ter ajudado, se as duvidas continuarem ou se puder especificar qual ponto te causa mais confusão, volte a perguntar. Bons estudos.
-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por Luizmatheusbr » Qui Mar 15, 2018 11:44
Gebe escreveu:Ok, vou tentar deixar mais detalhado. Vamos começar exemplificando melhor a questão da condição para a multiplicação.
Para que duas matrizes possam ser multiplicadas a primeira matriz deve ter o seu numero de colunas igual ao numero de linhas da outra. Vou dar dois exemplos de operações que NÃO podem ser realizadas:
ex1:

NAO pode ,pois a primeira tem 2 colunas e a segunda tem 3 linhas
ex2.:

NAO pode, pois a primeira tem 2 colunas e a segunda tem tres linhas.
Note com isso que a ordem da operação na multiplicação de matrizes é importante. No segundo exemplo se as matrizes tivessem trocado de lugar seria possivel de realizar a multiplicação, pois teriamos a primeira matriz com 3 colunas e a segunda com 3 linhas.
Agora para a multiplicação de fato, vamos considerar duas matrizes genericas uma A e outra B (matrizes abaixo). Perceba que as matrizes tem 4 elementos: a11, a12, a21 e a22 e b11, b12, b21 e b22. Estes indices como mostrado abaixo representam a linha e a coluna do elemento.


Dizemos que a multiplicação é feita linha por coluna, pois os elementos da matriz resultante serão calculados multiplicando a linha da primeira matriz pela coluna da segunda. Como neste caso explicar apenas com palavras fica dificil, vamos fazer o exemplo com essas genericas, sendo M a matriz resultante de AxB e m (minusculo) os elementos de M.
m11, elemento da linha1 e coluna 1 da matriz resultante é calculado pela multiplicação da linha1 da matriz A pela coluna 1 da matriz B, portanto:
m11 = a11*b11 + a12*b21
m12, elemento da linha1 e coluna 2 da matriz resultante é calculado pela multiplicação da linha1 da matriz A pela coluna 2 da matriz B, portanto:
m12 = a11*b12 + a12*b22
m21, elemento da linha2 e coluna 1 da matriz resultante é calculado pela multiplicação da linha2 da matriz A pela coluna 1 da matriz B, portanto:
m21 = a21*b11 + a22*b21
m22, elemento da linha2 e coluna 2 da matriz resultante é calculado pela multiplicação da linha2 da matriz A pela coluna 2 da matriz B, portanto:
m22 = a21*b21 + a22*b22

Outro exemplo com numeros agora e diferentes dimensões:

Por fim vale notar outro ponto interessante, a matriz resultante da multiplicação terá o mesmo numero de linhas da primeira e numero de colunas igual a da segunda.
Espero ter ajudado, se as duvidas continuarem ou se puder especificar qual ponto te causa mais confusão, volte a perguntar. Bons estudos.
como e o nome desse assunto do matriz x matriz? e esse mesmo? tem como me passa um video tutorial para que eu veja, porque eu posso estar vendo um tutorial errado se eu mesmo pesquisa
-
Luizmatheusbr
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qua Mar 14, 2018 22:42
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matematica
- Andamento: cursando
por Gebe » Qui Mar 15, 2018 16:41
Achei esse aqui
https://www.youtube.com/watch?v=oYVBWG0wkocEventualmente o youtube pode te sugerir videos semelhantes/relacionados caso tu não goste desse.
Há também um canal focado em ensino muito bom e didatico, o nome é
MeSalva (youtube). Não procurei este assunto la, mas provavelmente deve ter tambem.
-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por Luizmatheusbr » Seg Mar 19, 2018 18:28
Gebe escreveu:Achei esse aqui
https://www.youtube.com/watch?v=oYVBWG0wkocEventualmente o youtube pode te sugerir videos semelhantes/relacionados caso tu não goste desse.
Há também um canal focado em ensino muito bom e didatico, o nome é
MeSalva (youtube). Não procurei este assunto la, mas provavelmente deve ter tambem.
o fera tem como voce me passar os calculos dessas matriz das duas foto ?
pq a professora queria com calculo D:
-
Luizmatheusbr
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qua Mar 14, 2018 22:42
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matematica
- Andamento: cursando
por Luizmatheusbr » Seg Mar 19, 2018 20:55
Gebe escreveu:Achei esse aqui
https://www.youtube.com/watch?v=oYVBWG0wkocEventualmente o youtube pode te sugerir videos semelhantes/relacionados caso tu não goste desse.
Há também um canal focado em ensino muito bom e didatico, o nome é
MeSalva (youtube). Não procurei este assunto la, mas provavelmente deve ter tambem.
pls
-
Luizmatheusbr
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qua Mar 14, 2018 22:42
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matematica
- Andamento: cursando
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [MATRIZ] Como acho o determinante dessa matriz
por LAZAROTTI » Qui Mai 03, 2012 00:38
- 4 Respostas
- 6745 Exibições
- Última mensagem por Russman

Qui Mai 03, 2012 01:56
Matrizes e Determinantes
-
- Conjuntos(eu acho)
por marco brandao » Dom Mar 27, 2011 17:56
- 7 Respostas
- 5339 Exibições
- Última mensagem por marco brandao

Seg Mar 28, 2011 10:26
Álgebra Elementar
-
- como eu acho a taxa
por weverton » Qui Mai 20, 2010 03:12
- 6 Respostas
- 6773 Exibições
- Última mensagem por weverton

Qua Jun 23, 2010 17:48
Matemática Financeira
-
- Como eu acho os ângulos
por Balanar » Qua Set 01, 2010 01:04
- 5 Respostas
- 4480 Exibições
- Última mensagem por ednaldo1982

Sex Mar 30, 2012 00:46
Geometria Plana
-
- [Porcentagem e proporção] (eu acho)
por wendelmatheuss » Dom Out 29, 2017 11:22
- 0 Respostas
- 6225 Exibições
- Última mensagem por wendelmatheuss

Dom Out 29, 2017 11:22
Matemática Financeira
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.