=a-3.b3.c-5LaTeX: \frac{a^2 b^7 c^{-2}}{a^5 b^{-4} c^{-7}}a2b7c?2a5b?4c?7= a^-3.b^5.c^-5
LaTeX: \sqrt{25\%} + 3\%=0,25+0,03=0,5+0,03=0,53 ou 53%
LaTeX: (50\%)^2=(0,5)^2=0,25 = 25
=a-3.b3.c-5
![\sqrt[3]{2,5}.\sqrt[3]{400}=\sqrt[3]{2,5.400}=\sqrt[3]{1000}=\sqrt[3]{2^3.5^3}=2.5=10 \sqrt[3]{2,5}.\sqrt[3]{400}=\sqrt[3]{2,5.400}=\sqrt[3]{1000}=\sqrt[3]{2^3.5^3}=2.5=10](/latexrender/pictures/9197b35c6be452b03c6f8466a09da16b.png)




e com isso podemos "cortar" o denominador da expressão.


Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)