• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[FATORAÇÃO] como chegar no resultado final

[FATORAÇÃO] como chegar no resultado final

Mensagempor carolinaln » Seg Mai 08, 2017 20:46

{x}^{n+1}-{x}^{n+3}

Não sei fatorar e chegar em {x}^{n+1}\left(1-x \right)\left(1+x \right)

{a}^{2}+2ab+{b}^{2}-{x}^{2}

Fiz apenas o calculo reverso já com a resposta, mas não sei partir da formula inicial acima, a resposta é (a+b+x)(a+b-x)

{a}^{3}+3{a}^{2}b+3a{b}^{2}+{b}^{3}-{a}^{2}-2ab-{b}^{2}

Mesma situaçao, a resposta é {(a+b)}^{2}\left(a+b-1 \right)

Obg desde já
carolinaln
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Mai 08, 2017 20:23
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando

Re: [FATORAÇÃO] como chegar no resultado final

Mensagempor DanielFerreira » Dom Mai 14, 2017 00:51

Olá Carolina, seja bem-vinda!

Quanto à primeira, podemos resolvê-la aplicando as regrinhas de potência e fatoração, veja:

\\ \mathsf{x^{n + 1} - x^{n + 3} =} \\\\ \mathsf{x^n \cdot x^1 - x^n \cdot x^3 =} \\\\ \mathsf{x^n \cdot (x - x^3) =} \\\\ \mathsf{x^n \cdot x \cdot (1 - x^2) =} \\\\ \mathsf{x^{n + 1} \cdot (1 + x) \cdot (1 - x)}

Quanto à segunda, separe os três termos iniciais (trinômio). Note que \mathsf{(a + b)^2 = a^2 + 2 \cdot  \cdot b + b^2}. Depois fatore.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59